Technical Information

SICK
ColLa Communication Block

CCOM_TCP Function Block for
Siemens S7 Controllers

Date of issue: March 15, 2012 SICK

Sensor Intelligence.

Table of contents

1 About this dOCUMENt..........oo e e 3
1.1 Purpose of this dOCUMENTcooiiiii e 3
1.2 TArgET GIOUD ...t 3

2 General iNfOrmation ... ————————— 4

3 Hardware configuration ... 5
3.1 Supported PLC CONMIOIIErSccoeeeeeeeeeeeeeeeeeeeee e 5
3.2 Establishing @ connection ... 5

L2 38 =3 FeTed [qe L= o7 4 o { T o 8
g =Y [o Yo Q<Y o =Y {Tw= o] R 8
T @ 1o T=T = 1 (1 a o [o 14T Uo7 o) L= TR 9

4.2.1 Receiving reading results (RD)cccooiiiiiiiiiiiie e 9
4.2.2 Device communication via CoLa commands (REQ)ccooiiiiiiiiiiiiieiiiiiiinn. 9
B.2.3 TIMING oo i 10

4.3 RESPONSE 0 BITOIS ...ttt e e e ettt e e e e e e ettt e e e e e e e e e e eat b e e e e eaeeeeeeessaa e eeaaaeenenes 10
=T = 0 1= =T 11
R o] oo T [TR 13

£ = €= 11 1 o [P 14

ColLa TCP Function Block 1 About this document

1 About this document

Please read this chapter carefully before you begin working with these operating instructions
and the SICK CoLa communication block.

1.1 Purpose of this document

These operating instructions describe how to use the SICK CCOM_TCP function block. They are
intended to guide technical personnel working for the machine manufacturer/operator through
the processes of configuring and commissioning the function block.

1.2 Target group

These operating instructions are aimed at specialist personnel such as technicians and
engineers.

ColLa TCP Function Block 2 General information

2 General information

The CCOM_TCP function block facilitates data exchange between SICK devices and
S7 controllers. Only S7-300/S7-400 controllers with an integrated Industrial Ethernet (IE)
interface are supported.

This block can be used to operate the following SICK sensors:
- CLV6xx

- LECTOR62x

- RFH62x

- RFUB3x

The following figure shows how the function block is represented in the function block
diagram (FBD) view.

FE13
"CCOM_TCD™
ID_DOWE|—_
. —|EN
RD_COUNT |~
1D
RD_LEN|. .
. —{Tour
REQ_DOME[. |
. —STALT_REQ
REQ_BUSY|~ |
COMMANT _
. —|LENW REQ_LEN[- __
_ —|coMmann REQ_ERROR[
__ —|mECORD REQ_
ERROBCODE —
RD_ERROR|.
RD_
ERROBCODE —
EHO |-

Figure 1: Representation of function block in FBD view

Optional functions:

- Send ColLa' commands to a SICK sensor

- Receive ColLa responses from a SICK sensor

- Receive telegrams sent by devices (can be configured in SOPAS? output format)

! The command language (Cola) is a protocol internal to SICK for communicating with SOPAS devices.
SOPAS-ET is an engineering tool for configuring SICK sensors.

ColLa TCP Function Block 3 Hardware configuration

3 Hardware configuration

3.1 Supported PLC controllers

The function block may only be operated with Simatic S7-300 and S7-400 controllers.
Only controllers with an integrated IE interface are supported. TCP connections that have
been configured using a communication processor (CP module) are not supported.

3.2 Establishing a connection

A TCP connection to the sensor must be established before the function block can be used.
For S7 controllers with an integrated IE interface, Siemens provides the following
communication blocks (Standard Library - Communication Blocks):

- FB65 (TCON): To establish a TCP connection

- FB65 (TDISCON): To close down a TCP connection
- FB63 (TSEND): To send data

- FB64 (TRCV): To receive data

Figure 2 shows the FB65 call with the associated instance (DB65) in OB1. When the
controller starts up, OB100 is executed once. The start bit (REQ) of FB65 is set in OB100 to
establish the connection via FB65. Successful connection setup is indicated by the bit DONE
= TRUE. The connection parameters for establishing a connection are saved in a data
structure (UDT65).

The ID parameter of the TCON block and the instantiated UDT structure must be identical to
the ID of the CCOM_TCP function block.

Network 1: HERSTELLEN EINEER TCP VEEREINDUNG | OPEN TCP CONMNECTION

Herstellen einer TCP Verbindung mittels FBeS (TCOM)

Open TCP comnecticon wia FBeS (TCOM)

CALL "TCON" , "INSTANCE FEB&S" FEES / DEES

REQ :="TCON_PARMETER".CONNECT.REQ DEZ.DEXed.0
o c=MELEHL

DONE :="TCON_PARMETER".CONNECT.DONE DEZ.DEXed. 1l
BUST :="TCON_PAPMETER" . CONMECT.EBUSY DEZ.DEXEd Z
ERROR -="TCON_PAPMETER".CONMNECT.ERROR DEZ.DEXed. 2
STATUS :="TCON_PARMETER"_ CONNECT. STATUS DEZ.DEWEE

CONNECT:="TCON_PATMETER".CONMECT.TCON PAPAMETER PEDEZ . DEXOD. 0O

Figure 2: Using FB65 (TCON) to establish a TCP connection

The table below shows an example configuration of the UDT65.

Byte |Parameter Data type | Start value |Description
0-1 |block length WORD W#16#0040 |Length of the UDT65: 64 bytes (fixed)
2-3 |id WORD W#16#0001 | Reference to TCP connection.

This value must be identical to the
ID parameter at TCON (FB65) and to
the CCOM_TCP (FB13) block.

connection type |BYTE B#16#11 Connection type = TCP
active est BOOL TRUE Active connection establishment

[S0F 3

ColLa TCP Function Block

3 Hardware configuration

Byte |Parameter Data type | Start value |Description
6 local_device id |BYTE B#16#02 Type of TCP connection
In this case:
Communication via the integrated
Ethernet interface for CPUs 315-2
PN/DP and 317-2 PN/DP
7 local_tsap_id_len |[BYTE B#16#02 For connection type B#16#11 and
a passive end point
8 rem_subnet id_ |BYTE B#16#00 Not used
len
9 rem_staddr len |BYTE B#16#04 Length of the IP address of the station
(SICK device)
10 rem tsap id len |BYTE B#16#02 Fixed for connection type B#16#11
11 Next_staddr_len |BYTE B#16#00 Used length of the next_staddr
parameter (not used)
12 - |Local_tsap_id Array - Number of the local port used:
27 [1..16] of
BYTE [1] = High byte of the port number used
represented in hex format
[2] = Low byte of the port number used
represented in hex format
[3..16] = B#16#00
28 - |rem_subnet id |Array - Not used
33 [1..6] of [1..16] = B#16#0
BYTE
34 - |Rem_staddr Array - IP address of SICK device
39 [1..6] of
BYTE For example: 192.168.10.15
[11 =B#16#C0 (192)
[2] =B#16#A8 (168)
[3] =B#16#0A (10)
[4] =B#16#0F (15)
[5-6] = B#16#00
40 - |Rem_tsap id Array - Port number of connected SICK device
55 [1..16]
of BYTE SICK communication port: 2112
(decimal)
[1 = B#16#08 (high byte)
[2] = B#16#40 (low byte)
[3..16] = B#16#0
56 - |Next_staddr Array - Not used
61 [1..6] of
BYTE [1..6] = B#16#0
62 - |spare WORD W#16#0000 | Not used
63

Please refer to the Step7 help system for a precise description of the UDT parameters.

ColLa TCP Function Block 3 Hardware configuration

The CCOM_TCP block will only function if there is an active TCP connection to the
SICK device. Figure 3 shows the Step7 diagnostics screen for open communication via
Industrial Ethernet. To access this screen, select "Module Status - Diagnostics >
Occupied Connection Resources".

Diagnostics - Open Communication via Industrial Ethernet x|

Path: [COLA_TCP_INTGRATEDNSIMATIC 300(1)\CPU 3152 PN/DP

Connections:
Statug Remuote IF' address Type
B Connectio hed acti 1H:t||| 01 192 TCP

r— Conkection details:

Laocal P address: 192168.10.4
Local port: 43159
Femate [P addrezs: 1921681013
Remote port: 2112

Current connection establishment attempts: 0

Successful connection establishment attempts: 1

Bytes sent: 1215

Bytes received: 3936

Error meszage of last connection abort:

Error mezzage of last connection establizhrent
atternpt:

Update | Print... | Help |

Figure 3: Communication diagnostics

ColLa TCP Function Block 4 Block description

4 Block description

The CCOM_TCP (FB13) function block makes it easier to use SICK sensors with
S7 controllers. The block enables you to send and receive ColLa telegrams via a TCP
connection that has been configured with FB65.

The block can be used for the following tasks:

- Send CoLa commands to a SICK sensor

- Receive ColLa responses from a SICK sensor

- Receive telegrams sent by devices (can be configured in SOPAS output format)

The function block is an asynchronous FB, i.e., processing encompasses several function
block calls. Therefore, the function block must be called cyclically in the user program.

The CCOM_TCP block (FB13) encapsulates Siemens function blocks TSEND (FB63) and
TRCV (FB64), which are used for communication between the PLC and sensor.

4.1 Block specifications

Block number: FB13

Block name: CCOM_TCP

Version: 1.0

Blocks called: FB63 (TSEND)
FB64 (TRCV)
SFB4 (TON)

Data blocks used: -

Block call: Cyclical

Flags used: None

Counters used: None

Registers used: AR1, AR2 (for multi-instances)

Language used for block creation: Step7 STL

Blocks FB63 and FB64 are provided by the Siemens library.

ColLa TCP Function Block 4 Block description

4.2 Operating principle

The following parameters must be specified before the CCOM_TCP block can be used.

ID: Connection ID of the TCP connection. The value specified here must be the same as for
the ID parameter of the TCON block and the instantiated UDT structure. See also Figure 3.

COMMAND: The pointer references the data area in which the CoLa command is stored.

The data area must be created by the programmer (e.g., data block with an array of CHAR).
The commands must always be specified with [STX]/[ETX] framing.

COMMAND_LEN: Character length of the CoLa command to be transmitted

RECORD: The pointer references the data area in which the telegrams sent by the device
are stored. The data area must be created by the programmer (e.g., data block with an array
of BYTE).

4.2.1 Receiving reading results (RD)

Data sent by the device (RD) is written to the record as soon as the function block receives
new data. For one PLC cycle, the RD_DONE bit indicates that new data has been received.
The RD_COUNT counter is incremented as soon as new data has been received.
The RD_LEN parameter indicates the byte length of the telegram last received.

4.2.2 Device communication via CoLa commands (REQ)

When communication takes place via CoLa commands, the command defined in COMMAND
is transmitted to the device. The resulting response is stored in the area defined by the
RECORD pointer. CoLa commands are always sent with control characters ([ETX],
[STX] framing).

To start transmission, you must trigger the START_REQ parameter with a rising edge.
Until a valid response is received in reply to the CoLa command sent, the REQ_BUSY
parameter signals that a response is still pending. If no response is received within the
timeout period (TOUT), the function is terminated with a timeout error (REQ_ERRORCODE).
The REQ_DONE output parameter indicates that a response to a CoLa command has been
received (REQ_DONE = TRUE).

ColLa TCP Function Block 4 Block description

4.2.3 Timing
4

START REQ ﬂ

REQ_DONE

v

Y

REQ_BUSY

A

REQ_ERROR

-+
[]
[]
[]
[]
[]
™

\

Figure 4: Timing diagram

1: Request triggered by rising edge at START_REQ. The CoLa command referenced by the
COMMAND parameter is sent to the sensor. Only one command can be sent at a time.

2: Once the command has been sent and the response received, the function is terminated
with "REQ_DONE". If an error occurred during the function, the function is terminated with
"REQ_ERROR". "REQ_ERRORCODE" contains the error code that occurred if the function
is aborted with "REQ_ERROR".

4.3 Response to errors

The REQ_ERROR or RD_ERROR bits signal that an error has occurred. In this case,
an error code is output via the REQ_ERRORCODE or RD_ERRORCODE parameters.
The REQ_ERROR bit remains set untii a new command is started. The RD_ERROR
parameter is only ever active for one PLC cycle and is then reset unless the error remains.

10

ColLa TCP Function Block

4 Block description

4.4 Parameters

Parameter

Decla-
ration

Data
type

Memory
area

Description

EN

INPUT

BOOL

I,M,D,L,
const.

Enable input (LD and FBD)

ID

INPUT

INT

I,M,D,L,
const.

Connection ID for configured TCP
connection (see communication
diagnostics Figure 3 or ID parameter
TCON FB)

TOUT

INPUT

TIME

I,M,D,L,
const.

Period of time, after which a timeout
error is triggered

If this parameter is not connected,
the timeout period is set to 5 seconds
by default.

Please note that some Cola
commands require longer processing
periods (e.g., save commands).

START_REQ

INPUT

BOOL

[,M,D,L

Rising edge: System sends Cola
command and waits for corresponding
response

COMMAND

INPUT

ANY

Pointer referencing the area containing
the CoLa command to be sent. Only the
BYTE data type is permitted.

The commands must always be
specified with [STXJ/[ETX] framing
(ASCII control characters).

Note:

Please be aware that the DB parameter
data always has to be specified in its
entirety for the parameter

(e.g.: P#DB13.DBX0.0 BYTE 100).

An explicit DB number cannot be omitted,;
otherwise a block error will occur.

COMMAND_
LEN

INPUT

INT

I,M,D,L,
const.

Number of bytes in the CoLa command
to be sent, which is referenced by the
#COMMAND pointer

RECORD

INPUT

ANY

Pointer referencing the area in which
the telegrams sent by the device are
stored. Only the BYTE data type is
permitted.

Note:

Please be aware that the DB parameter
data always has to be specified in its
entirety for the parameter

(e.g.: P#DB13.DBX0.0 BYTE 100).

An explicit DB number cannot be omitted,;
otherwise a block error will occur.

11

ColLa TCP Function Block

4 Block description

Parameter Decla- Data Memory Description
ration type area
RD DONE OUTPUT |BOOL |Q,M,D,L Rising edge: A reading result sent
by the device has been received
(for formatting details, see SOPAS
output format).
Whenever a reading result is received,
the bit is set for one PLC cycle.
The reading result is available in
the memory area referenced by
the #RECORD parameter.
RD _COUNT |OUTPUT |BYTE |Q,M,D,L Counts the number of reading results
received. The counter goes from 0 to
255 (decimal). The counter restarts at
0 once 255 has been exceeded.
RD_LEN OUTPUT |INT Q,M,D,L Indicates the byte length of the reading
result received
REQ_DONE |OUTPUT |BOOL |Q,M,D,L Indicates whether a ColLa command
has been sent and a response received
TRUE: Successfully completed
FALSE: Not yet completed
The command response is available in
the memory area referenced by the
#RECORD parameter.
REQ BUSY |OUTPUT |BOOL |Q,M,D,L REQ command in progress
REQ LEN OUTPUT |INT Q,M,D,L Length of a response telegram in BYTES
REQ_ OUTPUT |BOOL |Q,M,D,L REQ error status:
ERROR
0: No error
1: Aborted with error
RD _ERROR |OUTPUT |BOOL |Q,M,D,L RD error status:
0: No error
1: Aborted with error
REQ_ERROR |OUTPUT |WORD |Q,M,D,L REQ error status (see "Error codes")
CODE
RD_ERROR |OUTPUT |WORD |Q,M,D,L RD error status (see "Error codes")
CODE
ENO OUTPUT |BOOL |Q,M,D,L Enable output (LD and FBD)

12

ColLa TCP Function Block

4 Block description

4.5 Error codes
The REQ_ERRORCODE and RD_ERRORCODE parameters contain the following error

information:
Error code | Brief description Description
W#16#0000 | No error No error
W#16#0001 | Invalid memory area Invalid memory area for specified ANY pointer.
specified for #RECORD A DB must be assigned to the pointer.
pointer
W#16#0002 | Invalid pointer length The referenced data block is shorter than the
specified for #RECORD length defined by the pointer.
pointer
W#16#0003 | Invalid memory area Invalid memory area for specified ANY pointer.
specified for #COMMAND | A DB must be assigned to the pointer.
pointer
W#16#0004 | Invalid pointer length The referenced data block is shorter than the
specified for #COMMAND | length defined by the pointer.
pointer
W#16#0005 | Timeout The command could not be executed within the
selected timeout period.
Possible causes:
- Device is not connected to the PLC
- Incorrect communication parameters
-CoLa commands have been used that do not
send back responses (echo).
- Command processing time > timeout period
W#16#0006 | Invalid command length The command being sent is longer than the
specified command length (COMMAND_LEN).
W#16#0007 | Invalid ColLa There is no [STX] [ETX] framing for the specified
command ColLa command.
W#16#000A | Telegram received > The received telegram is longer than the specified
#RECORD length #RECORD length.
W#16#000B | Telegram received - A telegram was received without [STX] [ETX]
without control characters framing.
- The received telegram is longer than the
specified #RECORD length.
W#16#7XXX | FB63/FB64 error For a description of the error, see the Step7
- help system.
WH#16#8XXX

13

ColLa TCP Function Block 5 Example

5 Example

Figure 7 shows an example of a connected CCOM_TCP function block. The TCP connection
to the SICK sensor is established with FB65 (TCON) during PLC startup (see Figure 5 /
Figure 6).

Program call:

oploo - "Complete BRestart"

Comment :

m: TCP VEFBINDUNG HERSTELLEN | ESTAELISHing A TCP COMNECTION

Herstellen einer TCP Verbindung nach jedem 3PS restart.

Opern TCP comnection after every PLC restart.

SET
= "TCON_PARMETER" CONMECT. REQ DEZ _DEHE4. 0O
Figure 5: Start of the connection setup in OB100
0El : '"Main Program Swesp (Cyclel”

Eitte beachten:

E=z werden nur 27-300/537-400 Steuerungen mit integrierter TCP-Schnittstelle
unterstitst

Dlease note:

This function block my only be operated with 57-300/387-400 controllers with
integrated TCP interfaces

Netvork 1 : HERETELLEN EINER TCP WEREINDUNG | OFEN TCP CONMNECTION

Herztellen =iner TCP Verbindung mittels FESS (TCON)

Open TCP comnection wia FEES (TCOM)

CALL “TCoON" , "INSTANCE_FE&LS" FEEL / DE&E
REQ :="TCON_PARMETER"_ CONMNECT.REQ DEZ _DEHE4. 0O
I =TMFLEHL
DOME "TCON_PAPMETER" . CONNECT .ONE DEZ DEHE4 .1
ETTET "TCON_PAPMETER" . CONMECT .BUZY DEZ DEHG4 2
ERROR "TCON_PARMETER" . CONMECT . ERROR DEZ _DEHG4 . 3
STATUE "TCON_PAPMETER" . CONMECT . STATUS DEZ _DEW&E
CONNECT:="TCON_PAPMETER" CONMNECT.TCON_PARAMETER PEDEZ _DEXO_O

CLE

= "TCON_PAFPMETER" . CONNECT.RE(Q DEZ _DEHE4. 0O

Figure 6: FB65 (TCON) call for creating a TCP connection

14

ColLa TCP Function Block

5 Example

Netzwerk 2 : AUFRUF CCOM TCP FB | CALL CCOMN TCP FE

Auafruf des Cola Funktionshausteins

Call of the CoLa function block

DEL1Z
"INSTANCE
FEL3"
FE13
"CCoM_TCP"
H1Z_ 0
. —|EN D DONE|—"ED Done"
WHLEHFLl —i ID HE1S

ED_COUNT m"DBD Count”
THEE = TOUT

. uE:
HIO.O PD_LENL—"RD Len"
"REQ
Start" — START REQ HiZ_4
REQ_DONE[—"REQ Done"
W14
" Commard COMMAND H1Z_1
Len" — LEN REQ_BUSY|'pEQ Busy"
PFDEL_DEBXO0 .]
.0 REQ_LEN|—"PEQ Len"
vorlaufige
Flatzhalt HIZ_Z
ervariable "REQ_
"DATA". REQ_ERROR—Error"
COMMAND = COMILAND
wzZ
PFDBL_DBX1 REQ_| "REQ
00_0 ERRORCODE mErrorcode"
"DATL".
RECORD —— RECORD H1Z_3

BD_ERROR("EDL Error"

HezZ4
ED | wpp
ERRORCODE —Errarcode"

ENO -

Figure 7: CCOM_TCP communication block call

15

ColLa TCP Function Block

5 Example

Table of variables for executing a CoLa command:
NCCOM TP Integrated function block

Mo 100 "REG_Start" BCOL Etrue

N Reading Result Status

Mo120 "RD_Done" BCOL false

MB 16 "RD_Count" DEC 23

Mo123 "RD_Error" BOOL false

Wi 24 "RD_Errorcoce” HEX W GR0000

I Reguesting Result Status

Moo12.4 "RE@_Done" BCOL true

M2 "REG_Busy" BCOL falze

Moo122 "REG_Error" BCOL falze

Wi 22 "REG_Errorcode” HEX WA BR0000
fCommanc

w14 "Command_Len" DEC 15 15
DE1CEE 0 ("DATA".COMMAND[T] CHARACTER 5 '
DB1CBE 1 ("DATA".COMMANDIZ] CHARACTER 's' 's'
DB1LCBE 2 ("DATA".COMMANDII] CHARACTER A" '
DB1LCBE 3 ("DATA".COMMAND[4] CHARACTER ' W'
DB1CBE 4 ("DATA".COMMANDIS] CHARACTER ' v
DB1LCBE 5 ("DATA".COMMANDIE] CHARACTER m m
DE1LCBE 6 ("DATA".COMMANDIT] CHARACTER T T
DB1LCBE 7 ("DATA".COMMANDIE] CHARACTER ! !
DB1LCBE 8 ("DATA".COMMANDIS] CHARACTER ' '
DB1CBE 9 ("DATA".COMMAMD[O] CHARACTER ‘g’ 'a'
DB1CBE 10 ("DATA".COMMAMD[11] CHARACTER 1 1
DBE1.CEE 11 ("DATA".COMMAMND[2] CHARACTER = e
DBE1.CEE 12 ("DATA".COMMAMND[3] CHARACTER o' o'
DBE1.CEE 13 ("DATA".COMMAMND[4] CHARACTER n' n'
DBE1.CEE 14 ("DATA".COMMAMND[S] CHARACTER 'L b
DBE1.CEBE 15 ("DATA".COMMAMND[E] CHARACTER B#1 600
DBE1.CBE 16 ("DATA".COMMAMND[T] CHARACTER B#1 600
DBE1.CEE 17 ("DATA".COMMAMND[E] CHARACTER B#1 600
DBE1.CBE 15 ("DATA".COMMAMND[19] CHARACTER B#1 600
DBE1.CEE 19 ("DATA".COMMAMND[Z0] CHARACTER B#1 600

The ColLa command ("[STX]sMN mTCgateon[ETX]" in this case) is executed as soon as the
"REQ_START" bit is triggered with a rising edge. The length of the command is transferred
to the Command_Len parameter (in this case: 15 characters).

16

ColLa TCP Function Block 5 Example

Table of variables for incoming command responses:

! Record

WA 18 "RD_Len" DEC 50

Wi 20 "REG_Len" DEC 17
DB1.0CBE 100 :"DATA" RECORD[] CHARACTER !
DB1.CBE 101 ("DATA" RECORD[2] CHARACTER 's!
DB1.0BE 102 "DATA" RECORD[3] CHARACTER A
DB1.CBE 103 "DATA" RECORD[4] CHARACTER '
DB1.CBE 104 ("DATA" RECORD[S] CHARACTER '
DB1.CBE 105 "DATA" RECORD[E] CHARACTER m
DB1.CBE 106 "DATA" RECORD[T] CHARACTER T
DB1.CBE 107 ("DATA" RECORD[S] CHARACTER !
DB1.0CBE 108 "DATA" RECORD[9] CHARACTER '
DB1.0CBE 109 :"DATA"RECORD[0] CHARACTER ‘g’
DB1.CBE 110 :"DATA" RECORD[11] CHARACTER 1
DB1.CBE 111 ("DATA"RECORD[2] CHARACTER !
DB1.0BE 112 "DATA"RECORD[13] CHARACTER o'
DB1.CBE 113 "DATA"RECORD[14] CHARACTER n'
DB1.CBE 114 ("DATA"RECORD[145] CHARACTER '
DB1.CBE 115 "DATA" RECORD[16] CHARACTER !
DB1.CBE 116 "DATA" RECORD[7] CHARACTER h
DB1.0BE 117 ("DATA" RECORD[18] CHARACTER B 6400
DB1.CBE 118 "DATA"RECORD[19] CHARACTER B 6400
DB1.CBE 119 "DATA" RECORD[20] CHARACTER B 6400

The response (REQ) to a sent command (in this case: "[STX]sAN mTCgateon 1[ETX]")
becomes available in the record area as soon as the value of the "REQ_DONE" output bit
changes from FALSE to TRUE (rising edge). The "REQ_LEN" parameter indicates how
many bytes were received and are valid.

17

ColLa TCP Function Block

5 Example

Table of variables for incoming reading results:

[f Recard

MY 15 "RD_Len" DEC 11
Wl 20 "REG@_Len" DEC 17
DB1.0BB 100 "DATA" RECORD[1] CHARACTER 9!
DB1.0BE 101 ("DATA" RECORD[Z] CHARACTER !
DBE1.0BE 102 ("DATA" RECORD[3] CHARACTER 2
DBE1.0BB 103 "DATA"RECORD[4] CHARACTER "7
DBE1.0BB 104 ("DATA" RECORD[S] CHARACTER ‘g
DBE1.0BB 105 "DATA" RECORD[E] CHARACTER g
DB1.0BB 106 "DATA" RECORD[T] CHARACTER ‘B’
DB1.0BB 107 "DATA" RECORD[E] CHARACTER T
DB1.0BB 105 "DATA"RECORD[9] CHARACTER 'g'
DBE1.0BB 109 "DATA"RECORD[10] CHARACTER 'g'
DB1.0BB 110 "DATA"RECORD[11] CHARACTER '
DBE1.0BB 111 "DATA"RECORD[12] CHARACTER '8!
DBE1.DBB 112 "DATA"RECORD[13] CHARACTER ‘o’
DB1.DBB 113 "DATA"RECORD[14] CHARACTER n'
DBE1.0BB 114 "DATA"RECORD[15] CHARACTER "
DBE1.0BE 115 "DATA"RECORD[1E] CHARACTER '
DBE1.0BE 116 "DATA"RECORD[17] CHARACTER e
DE1.0BE 117 "DATA"RECORD[18] CHARACTER B#1 600
DBE1.0BE 115 "DATA"RECORD[19] CHARACTER B#1 600

Data sent by the device (RD) is written to the record as soon as the function block receives
new data. For one PLC cycle, the "RD_DONE" bit indicates that new data has been received
(signal changes from FALSE to TRUE). The RD_COUNT counter is incremented as soon as
new data has been received. The "RD_LEN" parameter indicates how many bytes were

received and are valid.

18

