Technical Information

SICK

RFH6xX Function Block

Block Version V2.X

SICK RFH6XX TCP CP Function Block for
Siemens S7-Controls (Step7 V5.5)

SICK

Sensor Intelligence.

Table of contents

1.1 Purpose Of thiS dOCUMENTcooeiiieeeeeeeee e 3
N 1= T (o 1= o | 01U o PSPPSR 3
ATt aT=T = VN o] o =1 A o] o 4
S Hardware CONFIQUIAtION ... e e e e e e e e e 5
3.1 SupPOIted PLC CONIOIEISceveviiieiiiiieieeeeeee ettt 5
3.2 Configuration iN STEPTcoeeiiiiiiee e e e e et r e e e e e e e e et eaaeaaarae 5

v/ o] Lo Tod Qo F= 1Yot g1 o] {1 o PSSP 9
4.1 BIOCK SPECITICALIONS.eeeeieieeiiiiieiiiiieeeee ettt ettt ettt et et ettt et et e ettt e et e e e e e e e e ee e et e eeeeeeeeees 9
4.2 OPErating PHNCIPIE eee e e e e e e ettt e s e e e e e e e e aattaaaaaeeaeeearanes 10
G B STy 0 [0 g Y= (o I =Y {0 = SRR 12
N I T o 11T U RRPPPPUR 12
[N = N (=1] = PP 13
A5, L MOUE ..o 14
T o Tox Qo] [Yo 15
ST B [01771 o1 (o] Y PP S PP 15
R B o= Y= Vo I - Vo PR 16
A5 5 W TBY oo oo oo 16
I S I (=TT 0] 0 1 0 = g o 17
4.5.7 REAAING FESUIL ..ot e e e e e e e e e e e e e eeaaa s 17

4.6 Receiving reading results > 200 DYLEScoiiiiiiiiiiiiiiie e e 18

S R L= 1]] TP PP PP PUPPPPPRUPPPIN 20
LG 0T o Lo R 23
T EXAMIPIES e 26
7.1 Reading tag CONTENT.......ccciiiiiiieiiie e 27
7.2 WHEING tag CONTENT ..ot 28

Date: 29.04.2014 2

RFH6xx TCP CP
Technical Information Function Block SICK

About this document

Please read this chapter carefully before you start working with these operating instructions
and the SICK RFH6XX function block.

1.1 Purpose of this document

These operating instructions describe how to use the SICK RFH6XX TCP CP function block.
They are intended to guide technical personnel working for the machine manufacturer/operator
through the processes of configuring and commissioning the function block.

1.2 Target group

These operating instructions are aimed at specialist personnel such as technicians and
engineers.

Date of issue: 29.04.2014 3

RFH6xx TCP CP
Technical Information Function Block SICK

2 General information

The "SICK RFH6XX TCP CP" function block is used to facilitate communication between
a SIMATIC controller and a SICK RFH6xx RFID interrogator. The RFH6xXx communicates
with the controller via a TCP connection.

The following figure shows how the function block is represented in the function block
diagram (FBD) view.

¥B73
BFH&X RFID
function block
"BICE RFHEXX TCP
cpe
.. —EN
L. = I
.. = LADDE
.. =—CAN ID
.. = TOUT
.. —{START_REQ
.. =—{TRIG_ON
.. =—{TRIG_OFF
.. = FD_TAG
.. =—WE_TAG
.. = INVENTOET
LOCE_
.. == BLOCE FD_DONE |~ |
STAY DEQ_DONE—
.. = QUIET
DEQ_BUST .
.. =—{COM_TEZST
ERROR—
FREE_
. = COMMANT: ERRORCODE |— .
— DATA ENO (=

Figure 1: SICK RFH6XX TCP CP function block

Block functions:

- Send a trigger command (CoLa' command) via the PLC

- Receive reading results (defined in SOPAS-ET" output format)

- Read and write transponder content

- Execute an inventory command (show all transponders in the read field)
- Permanent blocking of transponder blocks

- Execute a communication test

- Communicate via freely selectable CoLa commands (CoLa-A protocol)
- Address devices that communicate with each other via CAN bus

T.The command language (CoLa) is a protocol internal to SICK for communicating with SOPAS devices.
" SOPAS-ET is an engineering tool for configuring SICK sensors.

Date: 29.04.2014 4

RFH6xx TCP CP
Technical Information Function Block SICK

3 Hardware configuration

3.1 Supported PLC controllers

The function block may only be operated with Simatic S7-300 and S7-400 controllers.
Only controllers that use a CP module for TCP communication are supported. Controllers with an
integrated Ethernet interface are not supported.

3.2 Configuration in Step7

A TCP connection to the sensor must be established before the function block can be used.
To do this, open the NetPro connection tool in the Simatic Manager (Simatic Manager >
Options - Configure network).

BENetPro - [COLA_TCP_CP (Network) -
%gNetwork Edit Insert PLC Miew Ophions ‘SWindow Help

LN Iy

Ethermet(1}
Industrial Ethernet

MPI(1) I I
MPI
-

|SIMATIC 300(1)

CPU MPKVOP (PN-IOCP (PN-IO
5T L . 31
PH/DP Lean |
] =] i
2

Figure 2: NetPro (Step7)

B ! e

Date: 29.04.2014 5

Technical Information

RFH6XxXx TCP CP
Function Block

SICK

Select the CPU in your S7 station and use "Insert - New Connection" to create a new
unspecified TCP connection.

The

"Active connection establishment"

Insert New Connection

x|

— Connection Partner

E-{&] In the curent project
- =-8p cowe_TCP_CP
e [Unispecified)
- Al broadcast stations
e A iz ast shations
% Ih unknown project

Praject: I

Station: I[Unspecified]

ff mduile: |

— Connection

TCP connection

Type:

¥ | Display properties before inserting

[o]

Apply | Cancel |

Help

Figure 3: Creating a TCP connection in NetPro (Step7)

checkbox must be activated on the

"General

Information” tab in the properties dialog box of the TCP connection. The connection
parameters for the TCP connection are displayed on the right-hand side of the dialog box.
These parameter values must be transferred to the SICK RFH6XX TCP CP function block
when the block is called (parameters: ID/LADDR).

Date: 29.04.2014

Properties - TCP connection

General Information | Addreszes IDplionsI Dvewiewl Statusz Infarmation I

r— Local Endpaint

1D [hex): o001 A0S0
M anne: |TI:F'-\r"erbindung-1
‘ia CP: |EP 3431 Lean, PNA0 [RO/S4)

Route.... |

W Active connection establishment I

[T Use FTF protocal

r Block Parameters

x|

Caticel |

Help |

Figure 4: NetPro TCP connection settings (Step7)

RFH6xx TCP CP
Technical Information Function Block SICK

The IP address and port used for the RFH must be specified on the "Addresses" tab.
By default, SICK sensors use port 2112 for communication.

x
General nformation Addiesses | Dptinnsl Dverview I Status Information I
Portz from 1025 through 65535 are available.
[Far further ports, refer ta onling help)
Lozal Remote
1P [dec): |1 92168.10.50 |1 921681013
FORT [dec): | 2000 |2112

Figure 5: TCP connection addresses (Step7)

Set the "Send/Recv" mode on the "Options" tab.

Properties - TCP connection x|
General Information I Addreszes Dplionsl Owerview I Status [nformation I
Local
Mode: I Send/Recy j
Carcel | Heb |

Figure 6: Operating mode of the TCP connection (Step7)

After you close the properties dialog box by clicking "OK", a TCP connection is displayed
automatically in the connection table. Save and compile the station and then load the
connection to your S7 controller. It may be necessary to restart the sensor in order to
establish the TCP connection.

Date: 29.04.2014 7

RFH6xx TCP CP
Technical Information Function Block SICK

For the purpose of diagnosing the configured TCP connection, you can view the connection
status under "Target system -> Activate connection status".

[NetPro _[COLA_TCP_CP {(Connection status) — -10l=|
%@ Metwork, Edit Insert PLC Wiew Options ‘Window Help =] x|
FEEE R IR EE S

COTSTITE, 1] 1 ﬂ

Industrial Ethernet

PP I I
MF

SIMATIC 30001}
MFIAOF 1 PN-10 [CF 1GBIT: AN-10
H A:I\t-anc H :
= i |
2
-
a| | »
Connection status |Local ID Partner || Partner Type Active connection partner | Subnet i’
= established Qo0 A050 TCP connection 1 TCP connection Yes Ethernet(1) [IE]
-
4 | | »
| Ready [TCP/1P{ALte) - > D-Link DUB-E100 USE 2. ... | A

Figure 7: Connection status of the TCP connection (Step7)

Date: 29.04.2014 8

RFH6xx TCP CP
Technical Information Function Block SICK

4 Block description

The function block is an asynchronous FB, i.e., processing encompasses several function
block calls. This means that the block must be called in the user program on a cyclical basis.

The RFH block encapsulates the “SICK CCOM TCP CP” (FB11), function block, which

facilitates communication between the PLC and the sensor. FC10 (SICK COLA ACCESS) is
used internally to interpret CoLa telegrams.

4.1 Block specifications

Block number: FB73

Block name: SICK RFH6XX TCP CP
Version: 2.1

Blocks called: FC5 (AG_SEND)

FC6 (AG_RECV)

FC10 (SICK COLA ACCESS)
SFC20 (BLKMOV)

SFB4 (TON)

FB11 (SICK CCOM TCP CP)
FB103 (AG_RECV_TCP_xVAR)

Data blocks used: DB73 (SICK RFH DATA)

Block call: Cyclical

Flags used: None

Counters used: None

Registers used: AR1, AR2 (for multi-instance calls)
Capable of multi-instancing: Yes

Language used for block creation: Step7 STL

Step7 version: Simatic Step7 V5.5

The system functions (SFCs) used in the function block must exist on the controller that is
being used.

If block numbers are changed, then the corresponding calls in the SICK RFH6XX TCP CP
block must be updated accordingly.

Date: 29.04.2014 9

RFH6xx TCP CP
Technical Information Function Block SICK

4.2 Operating principle

The following communication parameters must be specified before the RFH block can
be used:

ID: Connection ID of the TCP connection. The parameter is displayed in the NetPro connection
properties (see Figure 4).

LADDR: Start address of the CP module. The parameter is displayed in the NetPro connection
properties (see Figure 4).

DATA: The data block (DB73) that accompanies the function block contains input and output
parameters for the supported block functions. The data block must be transferred to the
"DATA" input parameter of the function block.

Executable block functions:

- Trigger on - Uses a CoLa command to open the device reading gate

- Trigger off - Uses a CoLa command to close the device reading gate

- Readtag - Reads out the transponder data

- Write tag - Writes transponder data

- Inventory - The inventory function searches for active transponders in the
RFH reading range and returns their UIDs.

- Lock block - Permanent blocking of a selected transponder block

- Stay quiet - Mutes the RFID tag located in the field.

- Communication test > Checks whether the device can be contacted by sending
command "sRI0"
- Free command - Executes a freely selectable CoLa command

To execute a block function (TRIG_ON, RD_TAG, etc.), the desired function must first be
selected. Only one function can be executed at a time. The START_REQ parameter must be
triggered with a rising edge (signal change from logical zero to one) in order for the function
to be executed. Until a valid device response is received, the REQ_ BUSY parameter signals
that a response is still pending.

If the block's REQ_DONE output parameter = TRUE, it means that the function has been
successfully completed. If data was requested from the device during this function
(e.g., RD_TAG), this data is copied to the relevant data area of the accompanying user data
block (DATA).

Data sent via a trigger command (TRIG_ON, TRIG_OFF) or directly by the device
(e.g., direct trigger via a photoelectric sensor) is stored in the data block
(ReadingResult.arrResult). For one PLC cycle, the RD_DONE output parameter indicates
that new data has been received. The data sent by the device can be changed or adapted in
SOPAS output format.

Date: 29.04.2014 10

RFH6xx TCP CP
Technical Information Function Block SICK

Figure 8: SOPAS output format

Date: 29.04.2014 11

RFH6xx TCP CP
Technical Information Function Block SICK

4.3 Response to errors

If the function block has an incorrect input value or if the input has been connected
incorrectly, an error bit (ERROR) is set and an error code (ERRORCODE) is output.
In this case, no further processing is carried out. The diagnostic parameters (ERROR,
ERRORCODE) of the function block retain their values until a new command is started.

4.4 Timing
A

START_REQ ﬂ

RD Tag

v

v

REQ_DONE

A4

REQ_BUSY

A 4

ERROR !

\

Figure 9: Timing diagram

1: Request triggered by rising edge at START_REQ

The desired function (RD_TAG in this case) must be selected at the same time/in advance.
Only one function may be selected at once; otherwise, the function will be aborted with
"ERROR".

2: Once all commands have been sent and all responses received, the function is terminated
with "REQ_DONE". If an error occurred during the function, the function is terminated with
"ERROR". "ERRORCODE" contains information on the error that occurred if the function is
aborted with "ERROR".

Date: 29.04.2014 12

RFH6xx TCP CP
Technical Information Function Block SICK

4.5 Value transfer

The supplied data block "SICK RFH DATA" (DB73) contains input and output parameters for
all supported block functions. The data block can be renamed according to the user program.
The data structure has a fixed definition and may not be modified except for the last entry
(ReadingResult.arrResult) (see chapter 4.6: Receiving reading results > 200 bytes).

™ DB73 -- "SICK RFH DATA" -- SICK_RFHEXX_PNDP'\SIMATIC 300(

Type Initial value
STRUCT
+0_0(Mode STRUCT -- MODE --
+0.0 bMode EOOL FALSE 1l: Use a fixed UID | 0: Use the UID of the transponder in the field (IN)
+Z.0 arrUIl ARRAT[1. 8] If bMode=1, this UID will be used for a Read/Write/Lock/Stay quit job (IN/0OUT)
*1l.0 ETTE
=1l0.0 END_STRUCT
+10.0| |iLockEBlock INT o Humber of the block that should be locked (IN)
+1Z.0(|Inventory STRUCT —— INVENTORY --
+0.0 iMunbetTags INT x) MNumber of returned transponders (0OUT)
+Z.0 arrTagInfo ABPAT[1. 5] Max. & transponder (0OUT)
*0.0 STRUCT
+0.0 nError EYTE EBflego Error code (0UT)
+1.0 nRSST ETTE Ef1lef0 BE8T B¥ walue (0UT)
+Z.0 nhEFID ETTE Ef1lef0 DSFIDL (0UT)
+4.0 arruiD ARBAT[1.. 8] uIL {ouT)
*1.0 EYTE
=1Z.0 END_STRUCT
=5z.0 END_STRUCT
+74_0| |ReadTag STRUCT —- READ TAG --
+0.0 iStartBlock INT o Humber of the first block that should be read (IN)
+z2.0 iNumElocks INT o Humber of blocks that should be read (IN)
+4.0 ilatalength INT o Content length in bytes (0UT)
t6.0 arrData ARBAT[1..128] Data to be read (0UT)
*1.0 EYTE
=134.0 END_STRUCT
+208.0(WriteTag STRUCT —-— WRITE TaG -
+0.0 iStartBlock INT o Humber of the first block that should be written (IN)
+z2.0 iNumElocks INT o Humber of blocks that should be written (IN)
+4.0 iBlockSize INT 4 EBlock size in bytes (IN)
t6.0 arrData ARBAT[1..128] Data to be write (IN)
*1.0 EYTE
=124_0 END_STRUCT
+34Z 0 |FreeCommand STRUCT —-- FREE COMMAND —-
+0.0 iCommandLength |INT [u] Evte length of the free command (IN)
+z.0 arrCommand ARRAT[1..100] Command (3ICE Cola-i protocel without [STH]/[ETH] framing) (IN)
*1l.0 CHAR
+10z.0 iResultLength INT o Byte length of the free command result (0UT)
+104.0 arrResult ARRAT[1..100] Result (3ICK CoLia-A protocol) (0UT)
*1.0 CHAL
=Z04.0 END_STRUCT
+546.0(ReadingResult STRUCT —- READING RESULT --
+0.0 nCounter ETTE Ef1lef0 This counter is incremented if a new reading result has arriwved (0UT)
+z.0 iLength INT [u] Evte length of the reading result (0UT)
+4.0 arrBesult ARBAT[1..Z00] Beading result data {(0UT)
*1.0 CHAR
=Z04.0 END_STRUCT
=7L0.0 END_STRUCT hd

Figure 10: Structure of SICK RFH DATA user data DB

Date: 29.04.2014 13

Technical Information

45.1 Mode

RFH6XxXx TCP CP
Function Block

SICK

The RFH can only communicate with a single transponder at any one time. For this reason,
read and write commands are always addressed. The function block uses the UID
(unigue identifier) to identify the transponder.

The function block supports two different modes in order to determine which transponder UID
is to be communicated with:

Mode 1: The system always communicates with the transponder which is currently in
the read field. This mode can only be used when precisely one tag is located within

the field.
Mode 2: A user-defined transponder UID is used for the purpose of communication.
Parameter Declaration | Datatype | Description
Mode.bMode Input BOOL Addressing mode
FALSE: Mode 1 active
TRUE: Mode 2 active
Mode.arrUID Input/Output | INT Transponder identifier (UID)
The UID is read out automatically in
Mode 1.

Date: 29.04.2014

Table 1: Mode parameters

14

Technical Information

45.2 Lock block

RFH6XxXx TCP CP
Function Block

SICK

The lock block function allows you to protect any block on the RFID tag by preventing it from
being overwritten. The block number is specified via the iLockBlock parameter before the
FB function is executed. The function permanently locks the selected block. The block

cannot be unlocked.

Parameter

Declaration

Data type

Description

iLockBlock

INPUT

INT

Number of the block to be locked

4.5.3 Inventory

The inventory function searches for active transponders within the receiving range of
the sensor. The function block provides the following information for each detected
transponder (max. 5 transponders).

Parameter Declaration | Data type | Description
Inventory. Output INT Number of detected transponders
iNumRetTags
Inventory. Output BYTE Transponder error code (see RFH
arrTaginfo[].nError operating instructions)
Inventory. Output BYTE RSSI (signal strength of detected
arrTaginfo[].nRSSI transponder)
Inventory. Output BYTE DSFID of detected transponders
arrTaginfo[].nDSFID
Inventory. Output ARRAY | UID of detected transponders in
arrTaginfo[J.arrUID [1..8] HEX format

OF BYTE

Date: 29.04.2014

15

RFH6xx TCP CP
Technical Information Function Block SICK

4.5.4 Read tag

The read tag function is used to read a defined data area of a tag. This function can only
ever be applied to one tag. The selected mode determines which transponder the system
communicates with (see chapter 4.5.1).

Prior to each read process, it is necessary to define which blocks are to be read out of
the transponder. Once the read process is successfully completed, the byte length of the
read data is stored in the user data DB along with the user data.

Parameter Declaration | Data type | Description
ReadTag. Input INT Number of block at which the read
iStartBlock process is to start
ReadTag. Input INT Number of blocks to be read
iNumBlocks
ReadTag. Output INT Length of read content in bytes
iDataLength
ReadTag.arrData Output ARRAY Content of read blocks

[1..128]

OF BYTE

Table 2: Read tag parameters

4.5.5 Write tag

The write tag function is used to write to a defined data area of a tag. This function can only
ever be applied to one tag. The selected mode determines which transponder the system
communicates with (see chapter 4.5.1).

Prior to each write process, it is necessary to define the block at which the write process

is to start and how many blocks are to be written. The block length of the transponder must
also be specified, because these changes depending on the tag type (see information from
tag manufacturer).

Parameter Declaration | Data type | Description
WriteTag. Input INT Number of block at which the write
iStartBlock process is to start
WriteTag. Input INT Number of blocks to be written
iNumBlocks
WriteTag. Input INT Block length in bytes
iBlockSize

Valid range:

[4,8,12,16,...]
WriteTag.arrData Input ARRAY | Data to be written to the transponder

[1..128] | blocks
OF BYTE

Table 3: Write tag parameters

Date: 29.04.2014 16

RFH6XxXx TCP CP
Function Block

SICK

Technical Information

4.5.6 Free command

The free command allows you to communicate with the RFH via a valid CoLa command.
For this to happen, the command must be stored in the "arrCommand" parameter of the
"FreeCommand" structure. The character length of the command to be transmitted is written
to the "iCommandLength" parameter. The commands can be obtained from the device
description or SOPAS-ET.

Parameter Declaration | Data type | Description
FreeCommand. Input INT Character length of the CoLa
iCommandLength command to be transmitted
Valid range
[1..100]
FreeCommand. Input ARRAY Freely selectable CoLa command
arrCommand [1..100] (for commands, see device
OF CHAR | documentation)
FreeCommand. Output INT Byte length of received ColLa telegram
iResultLength
FreeCommand. Output ARRAY Response to the transmitted ColLa
arrResult [1..100] telegram
OF CHAR

Table 4: Free command parameters

4.5.7 Reading result

The "ReadingResult.arrResult" array stores data that is sent via a trigger command (TRIG_ON,
TRIG_OFF) or directly from the device (e.g., direct trigger via photoelectric sensor).
The RD_DONE output parameter signals whether data has been received.

Parameter Declaration | Datatype | Description
ReadingResult. Output BYTE The receive counter is incremented by
nCounter one as soon as a new reading result
is received.
Value range:
[0x00..0xFF]
ReadingResult. Output INT Byte length of received reading result
iLength
ReadingResult. Output ARRAY Response to a trigger signal (can be
arrResult [1..200] defined via the SOPAS output format)
OF BYTE
The maximum length of the received
data is 200 bytes. Chapter 4.6
describes the procedure for receiving
longer data telegrams.

Table 5: Reading result parameters

Date: 29.04.2014 17

RFH6xx TCP CP
Technical Information Function Block SICK

4.6 Receiving reading results > 200 bytes

The function block is designed to receive reading results up to a length of 200 bytes. If longer
data is to be received, the function block must be changed at the points indicated below.

Changes in SICK RFH DATA data block:
The length of the "ReadingResult.arrResult" array in the user data block supplied (DB73)
must be set so that the reading result to be received fits into the data area of the variable.

+4Z26.0 |ReadingResult STRUCT —- READINCG RESULT --
+0.0 nlounter EYTE EfLlcf0 This counter is incremented if a new reading result has arriwed (0UT)
+Z.0 iLenogth INT o Byte length of the reading result (0UT)
+4.0 arrfesult ARPAY[1..E200] Deading result data (0UT)
*1.0 CHLR
=Z04.0 END_STRUCT

Figure 11: Receiving reading results > 200 bytes (change to data block)

Changes in SICK RFH6XX TCP CP function block:

In the static area of the variable overview, the length of the "arrRecord" variable must be
adapted so that the reading result fits into the data area of the variable. The array is not
allowed to be less than 500 bytes in length, but must be greater than or equal to the length of
"ReadingResult.arrResult".

Contents Of: 'Environment\Interface\STAT"

E--@ Interface

-4 IN ‘Bl iReqlength |Int 24.0
--Cl} oUT é’ﬂ arrCommand |Array [1..500] Of Byte 2a.0
H:' IN_OUT f arrRecord | Lrray [1..500] Of Byte 52g.0
C‘i’ STAT £BC00M SICK COOM ICE CP 102g.0
&4 TEMr £BTON TON 1168.0

Figure 12: Receiving reading results > 200 bytes (change to function block declaration)

The newly defined array lengths must be entered into network 3 of the SICK RFH6XX TCP
CP function block.

Date: 29.04.2014 18

Technical Information

RFH6XxXx TCP CP
Function Block

= M - CONFIGURATION

— Configure the length of the "Record" array

— Configure the length of the "Command" array

— Configure the length of the "Reading Result" array
— Configure [S5TX]/[ETX] framing flag

PLEASE NOTE:
"Record"™ array »= "Command" array
"Record"™ array »>= "Heading Result" array

//f-— LENGTH OF THE RECORD ARRAY
:
T fikrrayReclen

//—— LENGTH OF THE COMMARND RARRRY

L 500
T fidrrayComlen
//—— LENETH E READINGE RESULT ARRRY
L
T fikrrayHesdlen
//—— FRRMING
CLR S/ Rdd framing
= #tbhddFraming

//—— RESET RERDING RESULT FLRG:
CLR
= §RD DONE

SICK

Figure 13: Receiving reading results > 200 bytes (change to block code)

After modification, the instance of the function block must be updated. Subsequently,
the modified user data block and the function block must be transferred to the PLC again,
together with the updated instance.

Date: 29.04.2014

19

RFH6xx TCP CP
Technical Information Function Block SICK

5 Parameters

Parameter Decla- |Data Memory Description
ration type area
EN INPUT | BOOL [,M,D,L, Enable input (LD and FBD)
const.
ID INPUT INT I,M,D,L, Connection ID for the configured TCP
const. connection (see NetPro connection
settings Figure 4)
LADDR INPUT WORD I,M,D,L, Module start address of the configured
const. CP module (see NetPro connection
settings Figure 4)
CAN_ID INPUT | INT I,M,D,L, CAN ID of the sensor to be addressed
const.

If no CAN network is used, the CAN ID
is 0.

The master or multiplexer is always
addressed with CAN ID O
even if it has been assigned another

CAN ID.
TOUT INPUT | TIME I,M,D,L, Period of time, after which a timeout
const. error is triggered

START_REQ |INPUT BOOL I,M,D,L Rising edge:
Selected block function is executed

TRIG_ON INPUT |BOOL I,M,D,L, Block function: Execute a device trigger
const. (open trigger window).

TRIG_OFF INPUT BOOL I,M,D,L, Block function: Execute a device trigger
const. (close trigger window).

The result sent from the device
(SOPAS output format) is stored in the
"ReadingResult.arrResult" variable of
the user data DB (DB73).

RD_TAG INPUT BOOL I,M,D,L, Block function: Read tag content.
const.

This function only works if the parameters
of the "ReadTag" structure for the
transferred data block have been
assigned valid values (see chapter 4.5.4).

The selected addressing mode
determines which transponder is to
be read (see chapter 4.5.1).

Date: 29.04.2014 20

Technical Information

RFH6XxXx TCP CP
Function Block

SICK

Parameter

Decla-
ration

Data
type

Memory
area

Description

WR_TAG

INPUT

BOOL

I,M,D,L,
const.

Block function: Write tag content.

This function only works if the parameters
of the "WriteTag" structure for the
transferred data block have been
assigned valid values (see chapter 4.5.5).

The selected addressing mode
determines which transponder is to be
written to (see chapter 4.5.1).

INVENTORY

INPUT

BOOL

I,M,D,L,
const.

Searches for active transponders within
the receiving range and indicates their
UID, DSFID, and RSSI signal strengths

LOCK_
BLOCK

INPUT

BOOL

I,M,D,L,
const.

Protects a defined block by locking it so
that it cannot be overwritten

This function only works if a valid block
number has been assigned to the
iLockBlock parameter in the data block
being transferred (see chapter 4.5.5).

The function permanently locks the
selected block. The block cannot be
unlocked.

STAY_QUIET

INPUT

BOOL

I,M,D,L,
const.

Mutes the RFID tag located in the field

This function can only be used if

the HF field of the RFID device is
permanently switched on (see SOPAS -
Transponder Communication -

HF Field).

COM_TEST

INPUT

BOOL

I,M,D,L,
const.

Block function: Execute a
communication test.

REQ_DONE = TRUE:
Communication OK

REQ_DONE = FALSE:
Communication not OK

Date: 29.04.2014

21

Technical Information

RFH6XxXx TCP CP
Function Block

SICK

Parameter

Decla-
ration

Data
type

Memory
area

Description

FREE_
COMMAND

INPUT

BOOL

I,M,D,L,
const.

Block function: Execute a free command.

This function only works if valid data
has been assigned to the
iCommandLength and arrCommand
parameters in the structure
(FreeCommand) within the user data
block (DB73) (see chapter 4.5.6).

Following successful transfer,

the command response (REQ_DONE =
TRUE) is made available in the
RESULT area of the data block.

DATA

INPUT

BLOCK_
DB

Const.

Transfers the accompanying user data
block that is required to configure the
block functions and store the reading
results (DB73)

RD_DONE

OUTPUT

BOOL

QM,D,L

Rising edge:
New reading result received

REQ_DONE

OUTPUT

BOOL

QM,D,L

Indicates whether the selected block
function has been successfully completed

TRUE: Successfully completed
FALSE: Not completed

REQ BUSY

OUTPUT

BOOL

QM,D,L

Command in progress

ERROR

OUTPUT

BOOL

QM,D,L

Error bit:

0: No error
1: Aborted with error

ERROR
CODE

OUTPUT

WORD

QM,D,L

Error status (see "Error codes")

ENO

OUTPUT

BOOL

Q.M,D,L

Enable output (LD and FBD)

Date: 29.04.2014

Table 6: Block parameters

22

Technical Information

RFH6XxXx TCP CP
Function Block

6 Error codes

The ERRORCODE parameter contains the following error information:

SICK

Error code | Brief description Description
W#16#0000 | No error No error
W#16#0001 | Timeout error Command could not be executed within the
selected timeout period
Possible causes:
- Device is not connected to the PLC
- Incorrect communication parameters
- CAN bus station not present
W#16#0002 | Internal block error Internal block error
W#16#0003 | No block function selected, | Only one block function can be executed at
or more than one block atime.
function selected
W#16#0004 | Received The reading result received is longer than
reading result > reading 200 bytes. See chapter 4.6 for information on how
result array to receive longer reading results.
W#16#0005 | 100 < FreeCommand. Length of free command is invalid
iCommandLength <=0
Valid range:
[1...100]
W#16#0006 | Free command response | The response to the free command sent is longer
> 100 bytes than 100 bytes.
W#16#0007 | 63 <CAN_ID <0 Invalid CAN ID
Valid range:
[0..63]
W#16#0008 | Reserved Reserved
W#16#0009 | Communication error Communication could not be established with
the device.
Possible causes:
- Invalid ID parameter
- Invalid LADDR parameter
- Connection not established. (Please check the
NetPro configuration.)
- A telegram > arrRecord was received.
W#16#XXO0A | Device error A device error occurred ("sFA XX").

XX = device error (see device documentation)

Date: 29.04.2014

23

Technical Information

RFH6XxXx TCP CP
Function Block

SICK

Error code | Brief description Description
W#16#000B | Invalid command The selected function was not executed.
response
The following causes are possible, depending on
the function:
- Incorrect trigger setting in the SOPAS device
configuration
- Device is not in "Run mode"
- Tag not long enough in field
- Attempt to access a non-existent tag area
(check iStartBlock and iNumBlocks parameters)
- Invalid UID (check Mode.arrUID)
W#16#000C | Reserved Reserved
W#16#000F
W#16#0010 | Tags infield >5 Inventory cannot be executed because there
(Inventory) are more than 5 transponders in the read field of
the RFH.
W#16#0011 | ReadTag.iStartBlock <0 | Invalid start of reading (read tag)
W#16#0012 | 32 < ReadTag. A maximum of 128 bytes of transponder data can
iNumBlocks <=0 be read per function call (32 blocks of 4 bytes).
Valid range:
[1..32]
W#16#0013 | Content to be read > A maximum of 128 bytes of data can be read per
128 bytes function call.
The RD_TAG function must be executed several
times in succession in order to read more than
128 bytes of data.
W#16#0014 | WriteTag.iStartBlock <0 Invalid parameter
Valid range:
[0 .. max. number of transponder blocks]
W#16#0015 | 32 < WriteTag. A maximum of 128 bytes of transponder data can
iNumBlocks <=0 be written per function call (32 blocks of 4 bytes).
Valid range:
[1..32]
W#16#0016 | WriteTag.iBlockSize <> Invalid block size
4,8,12,16,...
Valid range:
[4,8,12,16,...]
W#16#0017 | Content to be written > A maximum of 128 bytes of data can be written

128 bytes

per function call.

The WR_TAG function must be executed several
times in succession in order to write more than
128 bytes of data.

Date: 29.04.2014

24

Technical Information

Funcion Block SICK

Error code

Brief description

Description

W#16#0018

iLockBlock < 0

Invalid iLockBlock parameter

Valid range:
[0 .. max. number of transponder blocks]

W#16#XX19

Transponder error

A transponder error has come up.
XX = Transponder- / Device errors

Transponder errors:

16#00: No error

16#01: Command not supported
16#02: Command nor recognized
16#03: Option not supported
16#0F: Unknown error

16#10: Block not available
16#11: Block already locked
16#13: Block write error

16#14: Block lock error

Device errors:

16#1E: Unknown error

16#1F:. CRC error

16#20: Parity error

16#21: Timeout error

16#22: No response error
16#23: Collision error

16#24: Content check error
16#25: Framing error

16#26: Verify error

16#27: Transmit error

16#28: Receive error

16#29: Non addressed error
16#2A: Tag type selection error
16#2B: Max block count error
16#2C: Block length mismatch error
16#46: Slot detect warning

For further error codes please have a look at the
device description.

W#16#001A

No tag in field

There are no tags in the receiving range of
the RFH.

W#16#001B

More than one tag in field

There is more than one tag in the receiving range
of the RFH. This error can only occur in Mode 1.

Table 7: Error codes

Date: 29.04.2014

25

RFH6xx TCP CP
Technical Information Function Block SICK

7 Examples

Figure 14 shows an example of a connected SICK RFU6XX TCP CP function block. The TCP
connection to the SICK sensor has been configured in advance using NetPro and the (ID) and
(LADDR) connection parameters transferred to the function block (see chapter 3.2). A zero is
entered for the CAN ID because the RFH is not operating on a CAN network.

Program call:

Network 2 : CALL SICE RFH PHDPF FUMCTION ELOCE

Comment :
CALL “"BICK RFH&X TCP CP" |, "INSTAWNCE_FE73" FE7Z f DEL17:=
IL =1
LADDE =TEleglon
CAN TIDx ="iCanIh" MIlE
TOUT =T#ES
START_REQ ="bRequest" Mio.o
TRIG_ON ="bTrigogerdn" Miz.1
TRIG_OFF ="bTriggerOff" M1z 2
ED_TAl ="bRdTag" Mlz.3
WER_TAG ="hblr Tag" Mlz.E
INWVENTORT ="bInwventory" Miz.7
LOCE_EBLOCK ="bLockElock" M1z.0
STAY QUIET ="bitayluiet" M1z.1
COM_TEST ="bConTest" M1Z. 4
FREE_COMMAND: ="bFreeConmand" M1Z. &
DATA :="SICE EFH DATA" DE73
I DONE ="bEdDone" Mio.1
REQ_DONE ="bReglbone" Ml0.E
REQ_BUSY ="bRegBusy" Mlo.3
ERROE ="hError" Mio.4
EREORCODE c="nErrorcode" MTl4

Figure 14: Example of a connected SICK RFH6XX TCP CP function block

Date: 29.04.2014 26

RFH6xx TCP CP
Technical Information Function Block SICK

7.1 Reading tag content

First, it is necessary to determine which transponder the system is to communicate with. If bit
Mode.bMode = FALSE, then the system will communicate with the transponder that is
currently located in the RFID sensor's reading range.

i Mo

|DE73.0EX 0.0 "SICK RFH DATA" Mode bMods ‘BooL Ii falze |

Figure 15: Selection of communication mode

Then, it is necessary to define what content is to be read out of the transponder.

Start block: 0

Number of blocks: 2 (humber of blocks to read)
if ========== Reqd Tay ==========
DE7IDEVY 74 ("SICK RFH DATA" ReadTag.istartBlock : DEC 1]
DE7IDEVY 76 ("SICK RFH DATA" ReadTag.iNumBlocks : DEC 2

Figure 16: Read tag parameters

The reading function (bRdTag) is executed as soon as the "bRequest" bit is triggered with
a rising edge.

NSICK RFHERR TCP Function Block Example

mA 16 "iCanio” DEC !

w100 "bRequest” BOOL utrue I
moo10.2 "bRegDane" Bl

mo 103 "bReqBusy" Bl

104 "hErrar" BCOL : falze

mA 14 "nErrarcoce” HEX i BRO000

I Selection of the FB action to be execute

M2 "BTriggerCn" BCOL
Moo122 "bTriggerCff" BCOL
Mo123 "bRdTag" BCOL |
Mo125 "y Tag" BCOL
Moo127 "hireventary” BOOL
M350 "bLockBlock" BCOL
Mo 1341 "hStaryCuit" BCOL
Moo12.4 "bComTest" BCOL
Mo 128 "bFreeCommand” Bl

Figure 17: Starting the block function

Date: 29.04.2014 27

Technical Information

RFH6XxXx TCP CP
Function Block

SICK

The reading function is completed as soon as bit bRegDone = TRUE. The read tag content is
available in the "ReadTag.arrData" array of the user data block. The "ReadTag.iDataLength"
variable specifies how many bytes have been received and are valid.

o Read Tag

DE73.DEVY 74 "SICK RFH DATA" ReadTag iStatBlock DEC 0
DE73DEVY 76 ("SICK RFH DATA" ReadTag iMumBlocks DEC 2
DE73DEVY 78 ("SICKH RFH DATA" ReadTag iDatalength (DEC 8
DB73DBEE 80 ("SICK RFH DATA" ReadTag.arrDatal1] (CHARACTER s
DE73DEE &1 ("SICK RFH DATA" ReadTag.arrData2] (CHARACTER I
DB73DBEE 82 ("SICK RFH DATA" ReadTag.arrDatal3] (CHARACTER e
DB73DBEE 83 ("SICK RFH DATA" ReadTag.arrDatald] (CHARACTER W
DB73DBEE 84 ("SICK RFHDATA" ReadTag.arrDatals] (CHARACTER "
DB73DBEE &85 ("SICK RFHDATA" ReadTag.arrDataB] (CHARACTER A
DB73DBEE 86 ("SICK RFHDATA" ReadTag.arrData7] (CHARACTER G
DB73DBEE &7 ("SICK RFH DATA" ReadTag arrDatald] (CHARACTER '
DB73DBEE 83 ("SICK RFHDATA" ReadTag.arrData@] (CHARACTER Bt 600
DB73DEE 89 ("SICK RFH DATA" ReadTag.arrData(10] (CHARACTER Bt 600

Figure 18: Read tag content

7.2 Writing tag content

First, it is necessary to determine which transponder the system is to communicate with. If bit
Mode.bMode = TRUE, then the system will communicate with the specified transponder,
the UID of which must be known in advance (in this case: EO 04 01 00 06 D2 37 45).

it Mode

DBE73DEX 0.0 "SICK RFH DATA" Mode bidode BCOL true
DE7VIDEE 2 "SICK RFH DATA" Mode arrUIC[1] HEX B#1 BRED
DE7VIDEE 3 "SICK RFH DATA" Mode arrUIC[2] HEX B#1E#04
DE7VIDEE 4 | "SICK RFHDATA" Mode arrUIC[S] HEX B#1E#01
DEVIDEE 5 "SICK RFHDATA" Mode arrUIC[4] HEX B#1 600
DEVIDEE & | "SICK RFHDATA" Mode arrUIC[S] HEX B#1ER0E
DE7VIDEE 7 "SICK RFH DATA" Mode arrUIC[E] HEX B#1 6402
DEVIDEE & | "SICK RFHDATA" Mode arrUIC[7] HEX B#1E#37
DEVIDBEE 9 "SICK RFH DATA" Mode arrUIC[E] HEX B E4s

F

igure 19: Specification of transponder UID

Then, it is necessary to define what content is to be written to the tag and where it should

be stored.

Date: 29.04.2014

28

RFH6xx TCP CP
Technical Information Function Block SICK

Start block: 0

Number of blocks: 3 (number of blocks to write)

Block size: 4 (transponder-dependent)

Data: "Hello World"
i =========='fte Tay ==========
DBE7I.DEVY 2058 "SICK RFH DATA" WriteTag iStartBlock (DEC 0
DE7I.DEVY 210 "SICK RFH DATA" WriteTag iMumBlocks (DEC 5
DE7IDEVY 212 "SICK RFH DATA" WriteTag iBlockSize (DEC a
DE730BEBE 214 ("SICK RFHDATA"\WriteTag.arrData[1] i CHARACTER H
DE7I0BEBE 215 ("SICK RFHDATA" \WriteTag.arrDatal2] (CHARACTER 2

DBEVIDEB 216 | "SICK RFH DATA" WriteTag.arrData[3] (CHARACTER I
DEVIDEE 217 ("SICK RFH DATA" WriteTag.arrData[4] (CHARACTER I

DEVIDEB 218 ["SICK RFH DATA" WriteTag.arrData[s] (CHARACTER ‘0’
DEVIDEE 219 ("SICK RFH DATA" WriteTag.arrData[s] (CHARACTER "
DBEVIDBEE 220 ("SICK RFH DATA"WriteTag.arrData[y] (CHARACTER W
DEVIDBEE 221 ("SICK RFH DATA"WriteTag.arrData[d] (CHARACTER ‘0’
DEVIDBEE 222 "SICK RFH DATA"WriteTag.arrData[9] (CHARACTER 't
DE7VIDEB 223 "SICK RFH DATA" WriteTag.arrData[10] CHARACTER I
DE7VIDEE 224 "SICK RFH DATA" WriteTag.arrData[11] CHARACTER e’

DE73DBEBE 225 "SICK RFH DATA"\AriteTag srrData(12] (CHARACTER oo
Figure 20: Write tag parameters

The write function (bWrTag) is executed as soon as the "bRequest" bit is triggered with
a rising edge.

N SICK RFHEXX TCP Function Block Example

M 16 "iCaniD" DEC 0

M 100 "bRequest" BOOL |.true |
Mo 102 "bReghone” BOOL true I
Mo 103 "hRegBusy" BOOL o falze

Mo 104 "bError” BOOL 1 falze

by 14 "nErrorcods” HEX W BR0000

If Selection of the FB action to be execute

Mo121 "BTriggeron" BOCOL
Mo122 "BTriggerCf" BOCOL
M 123 "bRATag" BOCOL
M 125 "B Tag" BOCOL I
Mo 127 "blnvertory" BOOL
M 130 "bLockBlock" BOCOL
Mo 131 "bstayCuit" BOCOL
Mo 124 "biZomTest" BOOL
Mo 1286 "bFreeCommand” BoOoL

Figure 21: Starting the block function

The write function is completed as soon as bit bReqDone = TRUE.

Date: 29.04.2014 29

	1.1 Purpose of this document
	1.2 Target group
	2 General information
	3 Hardware configuration
	3.1 Supported PLC controllers
	3.2 Configuration in Step7

	4 Block description
	4.1 Block specifications
	4.2 Operating principle
	4.3 Response to errors
	4.4 Timing
	4.5 Value transfer
	4.5.1 Mode
	4.5.2 Lock block
	4.5.3 Inventory
	4.5.4 Read tag
	4.5.5 Write tag
	4.5.6 Free command
	4.5.7 Reading result

	4.6 Receiving reading results > 200 bytes

	5 Parameters
	6 Error codes
	7 Examples
	7.1 Reading tag content
	7.2 Writing tag content

