Technical Information

SICK
ColLa Communication Block

SICK CCOM PN CP Function Block for
Siemens Step7 Controllers

SICK

Sensor Intelligence.



Table of contents

1 About this dOCUMENt..........oo e e 3
1.1 Purpose of this dOCUMENT .........cooiiiii e 3
1.2 TArgET GIOUD ...t 3

2 General iNfOrmation ... ————————— 4

3 Hardware configuration ... 5
3.1 Supported PLC CONMIOIIErS ........ccoeeeeeeeeeeeeeeeeeeeee e 5
3.2 Supported fieldbus gateways/SENSOrS..........cc.uuiiiiiiiii e 5
3.3 Configuration iN STEPT ......ccooiieeee e 5

3.3.1 Hardware configuration ... 5
3.3.2 ACCESS tO the 1/QO @rEa .......uuuiiiiiiiiiiii e nnnnnnnnnne 6

L2 38 =3 FeTed [qe L= o7 4 o { T o 9
4.1 BIOCK SPECIfICAtIONS......cceeiiiiii e 9
v @ o T=T = 1 (1 aTo I o 4T o7 o] L= 10

4.2.1 Receiving reading results (RD) ......ccooooeiiiiiiiiiiii e 10
4.2.2 Device communication via CoLa commands (REQ) ............ccooeviiiiiiiiiiiniiiiniinnn. 10
B.2.3 TIMING oo 11

4.3 RESPONSE 0 BITOIS ...ttt e e e ettt a s e e e e e e e eaata e e e e e aeeeeeeeeenn e eeaaeeeennes 11
4.4 Resetting commuUNICAtioN.........cooiiiiiiee e 11
N e T = 10 0 1= (= = TSRS 12
R o] oo T L= TP SRRRR 15

ES T = = 1.1 [ 16

Date of issue: 10.03.2014 2



ColLa PNDP Function Block 1 About this document

1 About this document

Please read this chapter carefully before you begin working with these operating instructions
and the SICK CoLa communication block.

1.1 Purpose of this document

These operating instructions describe how to use the SICK CCOM_PN_CP function block.
They are intended to guide technical personnel working for the machine manufacturer/operator
through the processes of configuring and commissioning the function block.

1.2 Target group

These operating instructions are aimed at specialist personnel such as technicians and
engineers.

Date of issue: 10.03.2014 3



ColLa Communication Block

2 General information

The CCOM_PN_CP function block facilitates data exchange between SICK devices and S7
controllers. The block supports a PROFINET connection via a Simatic CP module
(communication processor). Controllers with an integrated PROFINET controller are not

supported.

This block can be used to operate the following SICK sensors:

- CLV6xx
- LECTOR62x
- RFH62x
- RFUB3x
- MSC800

The following figure shows how the function block is represented in the function block

diagram (FBD) view.

FE14

ColLa communication
block
"CCOoM PN CD

EN

ID_DONE
ID_COUNT

ED_LEN

CPDATA TH RE(Q_DONE

CEDATA_
ouT

TOUT
START_EE
RESET
COMMAND

COMMAND_
LEN

RECORD

REQ_EUSY
REQ_LEN
REQ_ERROR

Q
REQ_
ERRORCODE
ID_EREOR

RD_
ERRORCODE

ENOD

Figure 1: Representation of function block in FBD

Optional functions:

- Send ColLa' commands to a SICK sensor
- Receive ColLa responses from a SICK sensor

- Receive telegrams sent by devices (can be configured in SOPAS" output format)

' The command language (Cola) is a protocol internal to SICK for communicating with SOPAS devices.

! SOPAS-ET is an engineering tool for configuring SICK sensors.

Date of issue: 10.03.2014

2 General information



CoLa Communication Block 3 Hardware configuration

3 Hardware configuration

3.1 Supported PLC controllers

The function block may only be operated with Simatic S7-300 controllers. Only controllers
that use a CP module for the PROFINET controller are supported. Controllers with integrated
PROFINET controllers are not supported.

3.2 Supported fieldbus gateways/sensors

The SICK sensor communicates with the controller via PROFINET. If the sensor does not
support PROFINET, a CDM425 gateway module can be used.

3.3 Configuration in Step7

The relevant sensor or gateway must be configured in the Step7 hardware configuration
before the function block can be used. The first step is to import the relevant generic station
description (GSDML file) into the Step7 hardware library.

The function block is specially designed for handshake mode. Only use modules from the
"Handshake V2.1" category, which are defined with a length of between 8 and 128 bytes.
The addresses used can be configured inside or outside of the 1/0 area. Addresses must not
be assigned to I/0O areas that have a partial process image and OB6x connection
(synchronous interrupts) assigned to them.

3.3.1 Hardware configuration
Figure 2 shows a sample configuration with a CDM425 PROFINET gateway.

T SIMATIC 300(1) (Configuration) — COLA_PN_CP =101 x|

== (0] IR
1 =~
2 CPU 315-2PN/DP E[z] 2005
X1 MALDe =

X2 Ai-i) ~TT] J!

&

ot (A rarr

M2 A2 o 2
3
4 CP 343-1 Advanced

X1 G

XIET Poi T -

3 I Ethernet(1]: PROFINET-0-5 ystem [100)
M2PrA Foit 7

X2P2A Foit 2

j
< | Ll_l
- :l (1] CDM425

Slot Module Order number | address 3 address Dizgnostic address: Comment |
& LDMLEE TOLELER LR

vl LOMNLNT Handvhade sl 7 ST

AT Fai 7 UG

INPUT [HS] - 20 bytes 019
OUTPUT [HS)- 20 bytes 0.13

oo-qmt_n-l:-w|r\3|—t

Figure 2: Step7 hardware configuration

Date of issue: 10.03.2014 5



CoLa Communication Block 3 Hardware configuration

Please note that the 1/O addresses of the CP module are not identical to the I1/O addresses of
the CPU because the CP module has its own address range. Therefore, direct
communication with the PROFINET station is not possible from the S7 program.

The entire 1/0O area of the CP module (in this case, the SICK CDM425 and Siemens
ET200S stations) is accessed via the FC11 (PNIO_SEND) and FC12 (PNIO_RECV)
functions. These functions result in a consistent I/O image of all the devices connected to
the CP module.

In order to utilize the Siemens FCs, the 1/O areas of the connected I/O devices must be
configured in a continuous sequence, starting with address 0.

3.3.2 Access to the I/O area

The I/O area of the connected stations should be read or written to during every PLC cycle.
In this example, the FC11/FC12 functions are called cyclically in OB1.

Function FC12 (PNIO_RECV) must be configured as follows:

CPLADDR: Hardware address of the configured CP module (see Figure 4)
MODE: 0 =10 controller mode
LEN: Byte length of all input data starting from address 0
CDM425 (0..19) = 20 bytes
ET200S (20..23) = 4 bytes
Total = 24 bytes
RECV: Pointer referencing the data area (DB) where the incoming data is to be stored
IOPS: Pointer referencing the data area (DB) where the IOPS (IO Producer Status) is
to be stored. The data area for the IOPS data must have a length of LEN/8
(24/8 = 3 bytes).

Date of issue: 10.03.2014 6



CoLa Communication Block 3 Hardware configuration

Netvork 2 : PECEIVE DATA

Feceive the whole CP-PN data wia FCl:Z

FC12
PNIO RECEIVE
"PMIO_RECY"

PEDBZ _DBXS
2.0
I
prodacer
status
PL_OUT /2
"PNIO_
DATA CP".

EN

WHlEF1F4 ——{ CPLADDR

Bfleg0 —{HODE

74 w— LEN

PDBZ _DBEX0
-0
FProcess
data input

"PNIO_
DATA CP".
ID_IN

RECV

IOpS

ERROR

SETATUSE

CHECK_
1003

ADD_INFO

ENO

—IORS

H50.0
—"RECY _NDER"

H50_.1
"RECYV_
~Error"

). Lo
"RECW_
—3tatus"

502
"RECT_
e ULER

HE54
"RECT_
addInto"

Figure 3: FC12 (PNIO_RECYV) call in OB1

Figure 4 shows you where to find the hardware address of the configured CP module in the

Simatic hardware configuration.

== 0] UR
1 -
; ;2?/03; AN Foon| [ eretons
2 AND
M2 PY Pod T
X2 A2 Poi 2
3
4 F CP 3431 Advanced Properties - CP 343-1 Advanced - (RO/54) il
X7 GEIT
W1 AT E For T - Uszers | Symbals I DMS Parameters I FTF I Diagnostics
P 1§ Avso7 General Addresses | Options I Time-of-Day Sunchronization I IP Acceszs Protection
M2PTAR ] Pow? i —_—
M2P2R F IR
A -
—I Start: R00) Length: 16 [~ System default
WH1GE1FA
1] |
— Output
=0 v
Slat | Maodule I Order numnber Start: 500 Length: 16 ™| Systern default
1] |

Figure 4: Hardware address of the configured CP module

Date of issue: 10.03.2014



ColLa Communication Block

3 Hardware configuration

Function FC11 (PNIO_SEND) must be configured as follows:

CPLADDR:
MODE:
LEN:

SEND:

IOCS:

Hardware address of the configured CP module (see Figure 4)

0 =10 controller mode

Byte length of all output data starting from address 0

CDM425 (0..19) = 20 bytes

ET200S (20..23) = 4 bytes

Total = 24 bytes

Pointer referencing the data area (DB) used to store the output data that is to
be written

Pointer referencing the data area (DB) where the IOCS (10 Consumer Status)
is to be stored. The data area for the IOCS data must have a length of LEN/8
(24/8 = 3 bytes).

Netvork 3 : ZEND DATA

Send the whole CP-FN data wia FC11

FC11l
FNIO ZEND

"PHIO_SEHND"

MELEHIFS —
Bflefl —
2 —

PEDBZ _DBXZ
4.0
Process
data
outpat

"DPNIO_
DATA CP".
D OUT —

EN

CPLADDR

MODE

LEN

Iacs

DLONE

ERROR

SETATUSE

CHECK_
I0CS

ENO

PEDEZ _DBX4
8.0
10
Cconsumer
status
PD_IN /8
"PNIO_
DATA_CP"
Iocs

H6O_0O
"SEND_
=Done"

H6O0_1
"SEND_
~Error"

). [ov
"SEND_
—3tatus"

H6D._Z
"SEND_
Iocs"

Figure 5: FC11 (PNIO_SEND) call in OB1

Date of issue: 10.03.2014



ColLa Communication Block 4 Block description

4 Block description

The CCOM_PN_CP (FB14) function block makes it easier to use SICK sensors with
S7 controllers. The block enables you to send and receive ColLa telegrams via a PROFINET
connection that has been set up in the hardware configuration.

The block can be used for the following tasks:

- Send CoLa commands to a SICK sensor

- Receive ColLa responses from a SICK sensor

- Receive telegrams sent by devices (can be configured in SOPAS output format)

The block automatically fragments the data as soon as it cannot be transmitted/received in
a cycle.

The function block is an asynchronous FB, i.e., processing encompasses several function
block calls. Therefore, the function block must be called cyclically in the user program.

4.1 Block specifications

Block number: FB14
Block name: CCOM_PN_CP
Version: 1.0
Blocks called: SFC20 (BLKMOV)
SFB4 (TON)
Data blocks used: -
Block call: Cyclical
Flags used: None
Counters used: None
Registers used: AR1, AR2 (for multi-instances)

Language used for block creation:  Step7 STL

The system blocks (SFCs/SFBs) used in the function block must exist on the controller that is
being used.

Date of issue: 10.03.2014 9



ColLa Communication Block 4 Block description

4.2 Operating principle
The following parameters must be specified before the CCOM_PN_CP block can be used.

CPDATA IN: Pointer referencing the input data of the sensor/gateway. The input data first
has to be fetched using function FC12 (PNIO_RECYV).

CPDATA OUT: Pointer referencing the output data of the sensor/gateway. The output data
has to be transmitted to the device using function FC11 (PNIO_SEND).

COMMAND: The pointer references the data area in which the CoLa command is stored.
The data area must be created by the programmer (e.g., data block with an array of CHAR).
The command must be specified without [STX]/[ETX] framing.

COMMAND _LEN: Character length of the CoLa command to be transmitted

RECORD: The pointer references the data area in which the telegrams sent by the device
are stored. The data area must be created by the programmer (e.g., data block with an array
of BYTE).

4.2.1 Receiving reading results (RD)

Data sent by the device (RD) is written to the record as soon as the function block receives
new data. For one PLC cycle, the RD_DONE bit indicates that new data has been received.
The RD_COUNT counter is incremented as soon as new data has been received.
The RD_LEN parameter indicates the byte length of the telegram last received.

4.2.2 Device communication via CoLa commands (REQ)

When communication takes place via CoLa commands, the command defined in COMMAND
is transmitted to the device. The resulting response is stored in the area defined by the
RECORD pointer.

To start transmission, you must trigger the START_REQ parameter with a rising edge.
Until a valid response is received in reply to the CoLa command sent, the REQ_BUSY
parameter signals that a response is still pending. If no response is received within the
timeout period (TOUT), the function is terminated with a timeout error (REQ_ERRORCODE).
The REQ_DONE output parameter indicates that a response to a CoLa command has been
received (REQ_DONE = TRUE).

Date of issue: 10.03.2014 10



ColLa Communication Block 4 Block description

4.2.3 Timing
4

START REQ ﬂ

REQ_DONE

v

Y

REQ_BUSY

A

REQ_ERROR

-+
[]
[]
[]
[]
[]
™

\

Figure 6: Timing diagram

1: Request triggered by rising edge at START_REQ. The CoLa command referenced by
the COMMAND parameter is sent to the sensor. Only one command can be sent at a time.

2: Once the command has been sent and the response received, the function is terminated
with "REQ_DONE". If an error occurred during the function, the function is terminated with
"REQ_ERROR". "REQ_ERRORCODE" contains the error code that occurred if the function
is aborted with "REQ_ERROR".

4.3 Response to errors

The REQ_ERROR or RD_ERROR bits signal that an error has occurred. In this case,
an error code is output via the REQ_ERRORCODE or RD_ERRORCODE parameters.
The REQ_ERROR bit remains set untii a new command is started. The RD_ERROR
parameter is only ever active for one PLC cycle and is then reset unless the error remains.

4.4 Resetting communication

The RESET bit can be used to reset communication between the gateway/sensor and
the PLC. This involves initializing the first eight bytes of the 1/0 output side with zero for one
second. The reset command is executed as soon as RESET = TRUE and START_REQ is
triggered with a rising edge. The REQ_BUSY bit signals that the command is being
processed. Once the reset routine is completed, the REQ_DONE bit is set.

Date of issue: 10.03.2014 11



ColLa Communication Block

4 Block description

4.5 Parameters

Parameter Decla- Data
ration type

Memory
area

Description

EN INPUT |BOOL

I,M,D,L,
const.

Enable

CPDATA_IN |INPUT |ANY

Pointer referencing the input area of
the sensor/gateway. Only the BYTE
data type is permitted.

Note:

Please be aware that the DB parameter
data always has to be specified in its
entirety for the parameter

(e.g.: P#DB13.DBX0.0 BYTE 100).

An explicit DB number cannot be omitted,;
otherwise a block error will occur.

CPDATA_ INPUT |ANY
ouT

Pointer referencing the output area of
the sensor/gateway. Only the BYTE
data type is permitted.

Note:

Please be aware that the DB parameter
data always has to be specified in its
entirety for the parameter

(e.g.: P#DB13.DBX0.0 BYTE 100).

An explicit DB number cannot be omitted,;
otherwise a block error will occur.

TOUT INPUT | TIME

I,M,D,L,
const.

Period of time, after which a timeout
error is triggered.

If this parameter is not connected,
the timeout period is set to 5 seconds
by default.

Please note that some ColLa
commands require longer processing
periods (e.g., save commands).

START_REQ |INPUT |BOOL

[,M,D,L

Rising edge: System sends CoLa
command and waits for corresponding
response

RESET INPUT |BOOL

I,M,D,L,
const.

Communication is reset (HS counter of
data flow protocol).

Date of issue: 10.03.2014

12



ColLa Communication Block

4 Block description

Parameter

Decla-
ration

Data
type

Memory
area

Description

COMMAND

INPUT

ANY

Pointer referencing the area containing
the CoLa command to be sent. Only the
BYTE data type is permitted.

The command must be specified
without [STX]/[ETX] framing.

Note:

Please be aware that the DB parameter
data always has to be specified in its
entirety for the parameter

(e.g.: P#DB13.DBX0.0 BYTE 100).

An explicit DB number cannot be omitted,;
otherwise a block error will occur.

COMMAND_

LEN

INPUT

INT

I,M,D,L,
const.

Number of bytes in the CoLa command
to be sent, which is referenced by the
#COMMAND pointer

RECORD

INPUT

ANY

Pointer referencing the area in which the
telegrams sent by the device are stored.
Only the BYTE data type is permitted.

Note:

Please be aware that the DB parameter
data always has to be specified in its
entirety for the parameter

(e.g.: P#DB13.DBX0.0 BYTE 100).

An explicit DB number cannot be omitted,;
otherwise a block error will occur.

RD_DONE

OUTPUT

BOOL

Q,M,D,L

Rising edge: A reading result sent by
the device has been received

(for formatting details, see SOPAS
output format).

Whenever a reading result is received,
the bit is set for one PLC cycle.

The reading result is available in the
memory area referenced by the
#RECORD parameter.

RD_
COUNT

OUTPUT

BYTE

QM,D,L

Counts the number of reading results
received. The counter goes from 0 to
255 (decimal). The counter restarts at
0 once 255 has been exceeded.

RD_
LEN

OUTPUT

INT

Q,M,D,L

Indicates the byte length of the reading
result received

Date of issue: 10.03.2014

13



ColLa Communication Block

4 Block description

Parameter |Decla- |Data Memory Description
ration type area

REQ_DONE |OUTPUT |BOOL Q,M,D,L Indicates whether a CoLa command
has been sent and a response received
TRUE: Successfully completed
FALSE: Not yet completed
The command response is available
in the memory area referenced by the
#RECORD parameter.

REQ BUSY |OUTPUT |BOOL Q,M,D,L REQ command in progress

REQ_ OUTPUT | INT Q,M,D,L Length of a response telegram in BYTES

LEN

REQ_ OUTPUT | BOOL Q,M,D,L REQ error status:

ERROR
0: No error
1: Aborted with error

RD_ERROR |OUTPUT |BOOL Q,M,D,L RD error status:
0: No error
1: Aborted with error

REQ_ERRO |OUTPUT |WORD Q,M,D,L REQ error status (see "Error codes")

RCODE

RD_ERROR |OUTPUT |WORD |Q,M,D,L RD error status (see "Error codes")

CODE

ENO OUTPUT | BOOL Q,M,D,L Enable output (LD and FBD)

Date of issue: 10.03.2014

14



ColLa Communication Block

4 Block description

4.6 Error codes
The REQ_ERRORCODE and RD_ERRORCODE parameters contain the following error

information:
Error code | Brief description Description
W#16#0000 | No error No error
W#16#0001 | Invalid memory area | Invalid memory area for specified ANY pointer.
specified for #RECORD | A DB must be assigned to the pointer.
pointer
W#16#0002 | Invalid pointer length | The referenced data block is shorter than the
specified for #RECORD | length defined by the pointer.
pointer
W#16#0003 | Invalid memory area Invalid memory area for specified ANY pointer.
specified for #COMMAND | A DB must be assigned to the pointer.
pointer
W#16#0004 | Invalid pointer length | The referenced data block is shorter than the
specified for #COMMAND | length defined by the pointer.
pointer
W#16#0005 | Timeout The command could not be executed
within the defined timeout period.
Possible causes:
- Device is not connected to the PLC
- Incorrect communication parameters
- CoLa commands have been used that do not
send back responses (echo).
- Command processing time > timeout period
W#16#0006 | Invalid command length The command being sent is longer than the
specified command length (COMMAND_LEN).
W#16#0007 | SFC20 error The SFC20 (BLKMOV) block is signaling a block
error. The error code is indicated in variable
"nStatusBLKMOV" of the instantiated data block.
To interpret the error code, please refer to the
Step7 help system.
W#16#000A | Received The received telegram is longer than the specified
telegram > #RECORD #RECORD length.
length
W#16#000B | Invalid input module The length configured for the input module is
invalid (CPDATA_IN pointer length).
Valid value range: [8..128]
W#16#000C | Invalid output module The length configured for the output module is
invalid (CPDATA_OUT pointer length).
Valid value range: [8..128]
W#16#000D | Internal block error Internal block error

Date of issue: 10.03.2014

15




ColLa Communication Block 5 Example

5 Example

Figure 7 shows an example of a connected CCOM_PN_CP function block. A SICK device
with a process data width of 20 bytes input/output has been set up in the hardware
configuration. In addition to the SICK device, another device has also been configured on the
CP module. The I/O areas of both devices are written to/read using functions FC11/FC12
(see chapter 3).

Program call:

Network 4 : AUFRUF CCOM PN CP FBE | CALL CCON PN CP FE

ufriuf des CoLa Funktionsbausteins (Profinet-Anbindung dber CP-Modual)

Call of the Cola function block (Profinet-Comnection wvia CP-Module)

DE114
"INSTANCE
FE1l4"
FE14
Cola communication
block
"CCOM PN _CP" HZz.0
Bl DONE —"ED Done"
—{zn -
HElG
P$DEZ. BED_COUNT —'BD_Count"
DEX0.0
EYTE z0 — CPDATA IN AWl
PD_LEN|—'ED Lan"
PHDEZ.
DE¥Z4.0 CPDATA_ H1Z_4
EYTE z0 —{0UT REQ_DONE —"REQ_Done"
T§los — TOUT H1Z_1
REQ_BUSY_"REQ Busy"
H10_0
"REQ AWZ0
Srart" — START REQ REQ_LEN| "REQ Len"
H10_1 "1z _2
"Peset" — RESET "REQ_
REEQ_ERRORLFrror"
P#DB1_DBX0
] AwzZZ
"DATA". REQ_| "REQ_
COMMAND = COMMAND ERRORCODE |mErrorcaode"
AW1l4 H1Z_3
"Command | COMMAND ID_ERRORL-vDL Error"
Len" — LEN
AwzZ4
PSDB1_DBX1L ED_| "pD_
00.0 ERRORCODE |mErrorcode"
"DATA".
LECOERD = EECORD ENO |-

Figure 7: CCOM_PN_CP function block call in OB1

Date of issue: 10.03.2014 16



ColLa Communication Block

5 Example

Table of variables for executing a CoLa command:

SPCCOM PN CP function block

W 100 "REG_Start” BCOL

mo104 "Reset" BCOL

N Reading Result Status

Mo 120 "RD_Done" BCOL

MBE 16 "RD_Count” DEZ

Mo 1235 "RD_Error” BCOL

Ty 24 "RD_Errorcode” HEX

Nl Requesting Result Status

MWo124 "REG@_Done" BCOL

mWo121 "REG_Busy" BCOL

MWo122 "REG_Error" BCOL

Mo 22 "REQ_Errarcade” HEX W1 B#0000

I Command

iy 14 "Command_Len" DEZ 13 13
DE1.DEE O "DATA"COMWANDIT] ZEICHEM 's' ‘s
DE1.0BEE 1 "DATA"COMMANDIZ] ZEICHEM ‘M '
DE1.0EE 2 "DATA"COMMANDIS] ZEICHEM ' M
DE1.0EE 3 "DATA".COMWANDIE] ZEICHEM " v
DE1.0BEE 4 "DATA"COMMANDIS] ZEICHEM ‘m' ‘m'
DE1.0BEE 5 "DATA"COMWANDIE] ZEICHEM T T
DE1.DBEE & "DATA"COMMANDIT] ZEICHEM Lo W
DE1.0BEE 7 "DATA"COMWANDIS] ZEICHEM g )
DE1.0BEE & "DATA"COMWANDIY] ZEICHEM ‘g’ ‘A’
DE1.0EE 9 "DATA"COMMAMND[O] ZEICHEM T 1
DBE1.0EE 10 "DATA" COMMAMND[1] ZEICHEM = e
DE1.0EE 11 | "DATA" COMMAND[ 2] ZEICHEM ‘o’ o'
DBE1.0EE 12 | "DATA" COMMAMND[ 3] ZEICHEM n' n'
DBE1.0EE 13 | "DATA" COMMAND[ 4] ZEICHEM B#1 600
DBE1.0EE 14 "DATA"COMMAMND[S] HEX B#1 600
DBE1.0EE 15 "DATA"COMMAMND[E] ZEICHEM B#1 600
DBE1.0EE 16 | "DATA" COMMAND[ 7] ZEICHEM B#1 600
DE1.0EE 17 | "DATA" COMMAMND[ ] ZEICHEM B#1 600
DB1.DBE 18 ("DATA"COMMAMND[3] ZEICHEM Bt 600
DB1.DBE 18 ("DATA" COMMAND[Z0] ZEICHEM Bt 600

The CoLa command ("sMN mTCgateon"

in this case) is

executed as soon as the

"REQ_START" bit is triggered with a rising edge. The length of the command is transferred
to the Command_Len parameter (in this case: 13 characters).

Date of issue: 10.03.2014

17



ColLa Communication Block

5 Example

Table of variables for incoming command responses:

[f Recard

MY 15 "RD_Len" DEZ F

Wl 20 "REG_Len" DEZ 15
DB1.0EB 100 "DATA"RECORD(1] ZEICHEM ‘s
DBE1.0BEE 101 {"DATA"RECORD{2] ZEICHEM '
DBE1.0BEB 102 i "DATA"RECORD(3] ZEICHEM M
DBE1.0BEB 103 i "DATA"RECORD(4] ZEICHEM v
DBE1.0BEB 104 "DATA"RECORD(S] ZEICHEM ‘m'
DB1.0BB 105 i "DATA" RECORD(E] ZEICHEM T
DB1.0BB 106 i "DATA"RECORD(T] ZEICHEM !
DB1.0BB 107 {"DATA"RECORD(S] ZEICHEM g’
DBE1.0BB 108 i "DATA"RECORD(9] ZEICHEM ‘a'
DB1.0BB 109 "DATA"RECORD[10] ZEICHEM T
DBE1.0BEE 110 "DATA"RECORD[11] ZEICHEM =
DBE1.0BEE 111 i "DATA"RECORD[12] ZEICHEM o'
DBE1.0BEE 112 i "DATA" RECORD[13] ZEICHEM n'
DBE1.0BEE 113 i "DATA" RECORD[14] ZEICHEM v
DBE1.0BEE 114 "DATA"RECORD[15] ZEICHEM he
DBE1.0BEE 115 "DATA" RECORD[1E] ZEICHEM B#1 600
DBE1.0BEE 116 "DATA"RECORD[17] ZEICHEM B#1 600
DBE1.0BEE 117 i "DATA"RECORD[18] ZEICHEM B#1 600
DBE1.0BE 1158 i "DATA"RECORD[19] ZEICHEM B#1 600
DBE1.0BEE 119 "DATA" RECORD[Z0] ZEICHEM B#1 600

The response (REQ) to a sent command (in this case: "sAN
available in the record area as soon as the value of the "REQ_DONE" output bit changes
from FALSE to TRUE (rising edge). The "REQ_LEN" parameter indicates how many bytes

were received and are valid.

Date of issue: 10.03.2014

mTCgateon 1") becomes

18



ColLa Communication Block

5 Example

Table of variables for incoming reading results:

i Recard

WA 18 "RD_Len" DEZ 9

WA 20 "REG@_Len" DEZ 15
DB1.0BB 100 "DATA"RECORD[] ZEICHEM '
DB1.0BB 101 "DATA" RECORD[Z] ZEICHEM 2
DB1.0BB 102 "DATA" RECORD[I] ZEICHEM 155
DB1.0BB 103 "DATA"RECORD[4] ZEICHEM ‘4!
DB1.0BB 104 "DATA" RECORD[E] ZEICHEM o
DB1.0BB 105 "DATA" RECORD[E] ZEICHEM ‘B’
DB1.0BB 106 "DATA" RECORD[T] ZEICHEM T
DB1.0BB 107 "DATA" RECORD[E] ZEICHEM 'g'
DB1.0BB 105 "DATA"RECORD[9] ZEICHEM 'g'
DB1.0BB 109 "DATA"RECORD[10] ZEICHEM T
DB1.0BE 110 "DATA"RECORD[11] ZEICHEM =
DE1.0B8 111 | "DATA"RECORD[12] ZEICHEM ‘o’
DBE1.0BE 112 | "DATA"RECORD[13] ZEICHEM n'
DBE1.0BE 113 | "DATA"RECORD[14] ZEICHEM "
DBE1.0BB 114 | "DATA"RECORD[145] ZEICHEM '
DBE1.0BE 115 "DATA" RECORD[16] ZEICHEM B#1 600
DB1.0BE 116 "DATA"RECORD[17] ZEICHEM B#1 600
DBE1.0BB 117 | "DATA"RECORD[1S] ZEICHEM B#1 600
DB1.0BE 115 "DATA"RECORD[19] ZEICHEM B#1 600
DBE1.0BE 119 "DATA" RECORD[20] ZEICHEM B#1 600

Data sent by the device (RD) is written to the record as soon as the function block receives
new data. For one PLC cycle, the "RD_DONE" bit indicates that new data has been received
(signal changes from FALSE to TRUE). The RD_COUNT counter is incremented as soon as
new data has been received. The "RD_LEN" parameter indicates how many bytes were

received and are valid.

Date of issue: 10.03.2014

19



