Technical Information

SICK

RFH6XxX Function Block

Version V2.X

SICK RFH6XX PNDP Function Block for
Siemens S7-Controls (Step7 V5.5)

SICK

Sensor Intelligence.

Table of Content

AN o Lo T) d T 3o [o Yo U [=T o | PP 3
1.1 Function of thiS dOCUMENTcoii i 3
O = 10 = e[0T o L PP UPPPPPTR 3

AT aT=T = U L] o] o =14 o o 4

S Hardware CONFIQUIALIONcoooeeeeeeeeeeee s 5
TR S0 o] o To] 1 (=T I o I PP PP PP PPPPPPPPPPPP 5
3.2 Supported fieldbus gateWayS / SENSOIS.........cuvviiiiiiiiiiiiiiiiiieieeieeeeee e 5
3.3 Configuration iN STEPTcoeeiiiiiei e e e e et e s e e e e e e et e e e e e e aarae 5

4 Description of FUNCHON BIOCK........uuiiii e 7
4.1 Function BIOCK SPECIFICALIONevvviiiiiiiiiiiiiiiieieieeeeee et 7
N @ o1 = 1110 o TN 1Yo To [TSRS 8
4.3 Behavior in the Case Of @N ©ITONouvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 10
T N1 011 Vo PP P PP PPPPPPPPPPP 10
I (U= (=1] = PP PPPPPPPPPP 11

A5, L MOUE ..o 12
T o Tox | o] [o U 13
TS TC I [01771 o1 (o] Y PSSP 13
R N S =T o [I Vo PP 14
A.5.5 WIEE TAG . et e e e e i 14
N S I (=TT @0] 1] .= o 15
4.5.7 ReadING RESUIL.......ooiie e e e e e e 15
4.6 Receipt of read results > 200 BYLEuuuiiiii i e e aanee 16

O PaAFAIMEBLETottt e et e e e et et et e e e e e erb e e erra e aaee 18

LGN 0T o T L= 21

T EXAMIPIES e 24
7.1 Reading OUL tag CONTENTSccoiiiiiiiiieee e 25
7.2 Writing Of tag CONTENESccooiiiiiiiiiiie e 26

Date: 29.04.2014 2

RFH6XxX PNDP
Technical Information Function Block SICK

1 About this document

Please read this chapter carefully before you start working with this operation manual and
SICK RFH6XX function block.

1.1 Function of this document

This operation manual describes how to use SICK RFH6XX PNDP Function Block. It is used
for guiding technical personnel working for the machine manufacturer / operator in project
planning and commissioning.

1.2 Target group

This Operation Manual is aimed for specialists, such as technicians and engineers.

Date: 29.04.2014 3

RFH6XxX PNDP
Technical Information Function Block SICK

2 General Information

The function block “SICK RFH6XX PNDP” is used for the communication between a
SIMATIC control and a SICK RFH6XX RFID interrogator.

The following image shows the function block in the view of the function block diagram
(FBD).

FB73
EFHeX BFID
function block
"S8ICE RFHEX PNDP"

.. = EN
.. =—{IN_ADDEL
.. = IN_LEN
.. = 0UT_ADDER
.. = 0UT_LEN
.. = CAN ID
.. = TOUT
.. =—{START_REQ
.. =—{TRIG_ON
.. —{TRIG_OFF
.. =—{BD TAG
.. =—WE_TAak
.. = INVENTORT

LOCE
.. == BLOCE

STAY D DONEf~ .
.. = QUIET

REQ_DONE[— __
.. =—{COM_TEZT
REQ_BUSY[— __

FIREE_
. = COMMAND ERROR|—
_ . = BEBET ERRORCODE |—_ _ .

— DATA ENOL

Image 1: SICK RFH6XX PNDP function block

Features of the function block:

- Sending of a trigger (CoLa' command) via the PLC

- Receiving of read results (defined in SOPAS-ET" output format)

- Read and write transponder contents

- Carrying out an Inventory-command (display all transponders in the reading field)
- Permanent locking of transponder blocks

- Carrying out a communication test

- Communication via free selectable CoLa commands (CoLa-A protocol)

- Addressing of devices which communicate via CAN-Bus

T.The Command Language (ColLa) is an internal SICK protocol for the communication with SOPAS devices
" SOPAS-ET is an engineering tool for the configuration of SICK sensors

Date: 29.04.2014 4

RFH6XxX PNDP
Technical Information Function Block SICK

3 Hardware configuration

3.1 Supported PLC

The function block must only be used with a S7-300 / S7-400 controller family. Only PLC’s
with integrated fieldbus interfaces are supported. The communication via a communication
processor is not supported from this function block.

3.2 Supported fieldbus gateways / sensors

The SICK sensor communicates via fieldbus (Profibus/Profinet) with the PLC. If the sensor
cannot support the fieldbuses mentioned above, Gateway modules can be used.

The following Gateways are supported from the function block:
- CDM 425 (Profinet), starting with firmware version V3.31
- CDF 600 (Profibus), starting with firmware version V1.15
- CDM 420 incl. CMF400 Profibus Module, starting with firmware version V1.100

Necessary RFH firmware version:
- RFH6xx, starting with firmware version V1.31

3.3 Configuration in Step7

Before the function block can be used, the RFH has to be projected in the hardware configu-
ration in Step7. Therefore, the corresponding device file (GSD-file) has to be imported in the
hardware library in Step7.

The function block is laid out especially for the handshake mode (Confirmed Messaging Pro-
tocol). Please do only use HS-modules with a length between 8...128 Bytes. The used ad-
dresses can be projected in the periphery or outside. An address assignment on the periph-
ery to which a partly process image with OB6x-connection (alarm of asynchronous trigger) is
assigned, must not be used.

Image 2 shows an example configuration of a RFH in combination with a CDF600 Profibus
Gateway.

Date: 29.04.2014 5

Technical Information

RFH6xX PNDP

Function Block

SICK

JHW Config - [SIMATIC 300(1) {Configuration) - SICK_RFHEXX_PNDP] _(ol x|
E“] Station Edit Insert PLC Yiew Options ‘Window Help =
DEe® % & e da He|%8 e

iI oix|
Eind: | nj & ,|
- FErofile: I Standard j
2 CPU 315-2 PN/DP -
X1 MEDE J EE HFHL?”.” _— 2
2 e = CHBin
M2PTR i S | IN— R | I O R A Chl Bits out J
X228 Poit 2 1 Bt ou)
=1 Il e——t M i Start Remate Config 333555550
A ;I ----- Object Trigger Ctil
----- HF_Settings
Sl || I B R Serial Aux. Interface
| | X | T R CDFE00 Made
----- Digital Inputs
:I:I (22) RFHExx e e Digital Outputs
----- Command 20Byte
Slat DFID Order Mumber / Designation | Address | O Address | Comment | |} ¢ ¢ ¢ & e Command 30Byte
1 208 Chl Eits in 25K, 257 0 [0 | T A R Command S0Byte
2 224 Chil Bits out i R (] I T S R End Remaote Config <<<<qqgdde-
3 B4 32 byte input con [Ox40,09F) LT] i (| T S S R 1 byte input con (0=90)
4 128 32 byte output con [0280.0=9F] 2h3...289 | ----- 2 byte input con (02911 il
5 4 3
5 PROFIBUS-DP slaves for SIMATIC 57, M7, and C7 ?.<|
7 [distributed rack] —
B =l
Press F1 ko get Help. [Y

Image 2: Step7 Example of hardware configuration

Date: 29.04.2014

RFH6XxX PNDP
Technical Information Function Block SICK

4 Description of Function Block

The function block is working asynchronously, which means the processing is done via vari-
ous function block call ups. Therefore it is necessary that the function block is called up cycli-
cally in the user program.

The RFH function block encapsulates “SICK CCOM PNDP” (FB10), which allows the com-
munication between PLC and sensor. FC10 (SICK COLA ACCESS) is used internally for the
interpretation of CoLa-telegrams.

4.1 Function block specification

Number of function block: FB73

Name of function block: SICK RFH6XX PNDP
Version: 2.1

Called up function blocks: SFC 14 (DPRD_DAT)

SFC 15 (DPWR_DAT)
SFC20 (BLKMOV)

SFB4 (TON)

FB10 (SICK CCOM PNDP)
FC10 (SICK COLA ACCESS)

Used data blocks: DB73 (SICK RFH DATA)

Function block call up: Cyclically

Used flag: none

Used counter: none

Used register: AR1, AR2 (for multi instance call up)
Multi instance capable: yes

Language: Step7-AWL

Step7 Version: Simatic Step7 V5.5

The system functions (SFCs) used in the function block have to be available on the respec-
tive PLC.

When changing the function block numbers, the respective calls in the function block SICK
RFH6XX PNDP have to be updated.

Date: 29.04.2014 7

RFH6XxX PNDP
Technical Information Function Block SICK

4.2 Operation Mode

In order to use the RFH function block, the following communication parameters have to be
set:

IN_ADDR: Projected entry point address of the used input modules of the input area. The
entry point address is fixed by the projecting of the hardware (see chapter 3.3). The value
has to be in hexadecimal format (e.g. address 256 = W#16#100).

IN_LEN: Length of the used input modules in the hardware configuration. The length of the
input module is fixed by the projecting of the hardware (see chapter 3.3).

OUT _ADDR: Projected entry point address of the used output module of the output area.
The output address is fixed by the projecting of the hardware (see chapter 3.3). The value
has to be in hexadecimal format (e.g. address 256 = W#16#100).

OUT LEN: Length of the used output module in the hardware configuration. The length of
the output module is fixed by the projecting of the hardware (see chapter 3.3).

DATA: The data block (DB73) belonging to the function block contains in- and output param-
eter of the supported function block actions. The data block has to be transferred to the input
parameter “DATA” of the function block.

Realizable function block functions:

- Trigger on - Opens the reading gate of the device per CoLa command

- Trigger off - Closes the reading gate of the device per CoLa command

- Read Tag - Read transponder data

- Write Tag - Write transponder data

- Inventory - The inventory action searches in the reading area of the RFH
for active transponders and returns their UID.

- Lock Block - Permanent locking of a selected transponder block

- Stay Quiet - Muting of a RFID tag which is in the field.

- Communication test - Checks if the device can be reached via ,sRI0“ command

- Free Command - Executes a free selectable CoLa command

- Reset - Reset of the communication

In order to execute a function block action (TRIG_ON, RD_TAG, etc.), the desired action has
to be selected first. Only one action can be executed at the same time. In order to do the
action, the parameter START_REQ has to be triggered with a positive edge (signal change
from a logical cero to one). As long as no valid device answer has to be received, this is sig-
nalized via the parameter REQ_BUSY.

If the function block signalizes REQ_DONE = TRUE at the output parameter, the action has
been done successfully. If, for this action (e.g. RD_TAG) data has been requested from the
device, it will be copied into the respective data area of the UDTs.

Data that is sent per trigger (TRIG_ON, TRIG_OFF) or directly from the device (e.g. direct
trigger via a light switch), is stored in the data function block (ReadingResult.arrResult). The
output parameter RD_DONE indicates for one PLC cycle, that new data has been received.
The from the device sent data can be changed in the SOPAS output format.

Date: 29.04.2014 8

RFH6XxX PNDP
Technical Information Function Block SICK

Image 3: SOPAS output format

Date: 29.04.2014 9

RFH6XxX PNDP
Technical Information Function Block SICK

4.3 Behavior in the case of an error

If there is a wrong input value or a wrong input circuit of the function block, an error bit
(ERROR) is set and an error code (ERRORCODE) will be given out. In this case there is no
further processing. The diagnosis parameter (ERROR and ERRORCODE) of the routine
maintain their value until a new request has been started.

Via the RESET Bit you can reset the communication between the sensor and the PLC. The
reset is being carried out as soon as the RESET Bit has been preselected and the
START_REQ Bit has been triggered with a positive edge (signal change from cero to one).
The REQ_BUSY Bit signalizes that the order is in process. As soon as the reset routine is
terminated, REQ_DONE Bit is being set.

Because of the reset the following actions are done:

- Reset of the counter of confirmed messaging protocol (device communication)
- Reset of all error messages

4.4 Timing
A

START_REQ ﬂ

RD _Tag

v

v

REQ_DONE

v

REQ_BUSY

v

ERROR H

v

Image 4: Timing Diagram

1: Request through pos edge to START_REQ

The desired action (here RD_Tag) has to be selected in advance / at the same time. Only
one action must be selected at the same time, otherwise there is a break-down with
,ERROR®.

2: If all commands are sent and all replies are received, the action is ended with

,REQ_Done“. If the action is faulty, it will be terminated with ,ERROR®. If terminated with
,ERROR*, you can find the error in ,ERRORCODE".

Date: 29.04.2014 10

RFH6XxX PNDP
Technical Information Function Block SICK

4.5 Value transfer

The data function block “SICK RFH DATA” (DB73) contains input and output parameters of
all supported function block actions. The data function block can be re-named according to
the user program. The data structure is pre-defined and must not be changed (except for the
last entry (ReadingResult.arrResult) (see chapter 4.6: Receipt of read results > 200 Byte).

™ DB73 -- "SICK RFH DATA" -- SICK_RFHEXX_PNDPSIMATIC 300(

Type Initial wvalue
0. STRUCT
+0.0| [Mode STRUCT -- MODE --
+0.0 bMode EBOOL FALSE l: Use a fixed UID | 0: Use the TID of the transponder in the field (IN}
+Z.0 arrlUIl ARRAT[1..8] If bMode=1l, this UIl will be used for a Read/Write/Lock/Stay gquit job (IN/OUT)
*1.0 ETTE
=10.0 END» STRUCT
+10.0| |iLockElock INT a Humber of the block that should be locked (IN)
+1lZ_0(|Inventory STRUCT —— INVENTORT --
+0.0 iNunRetTags INT o MNuwber of returned transponders (0UT)
+z.0 arrTagInfo ARDAY[1..E] Max_. & transponder (00T
*0.0 STRUCT
+0.0 nError EYTE BELeg0 Error code (0UT)
+1.0 nRSsT ETTE Bf1lef0 BE8T B¥ walue (0UT)
+Z.0 nDEFID ETTE Bf1lef0 DSFID (0UT)
+4.0 arrUIl ARRAT[1..8] UIL {0UT)
*1.0 EYTE
=lZ.0 ENL:_STRUCT
=6z.0 END_STRUCT
+74_0| |ReadTag STRUCT —— READ TAG --
+0.0 iStartBElock INT a Humber of the first block that should be read (IN)
tZ.0 iNumBlocks INT a Humber of blocks that should be read (IN)
t4.0 ilatalength INT a Content length in bytes (0UT)
+6.0 arrData ARRAT[1..128] Data to be read (0UT)
*1.0 EYTE
=124.0 END_STRUCT
+E08.0([TriteTag STRUCT —-— WRITE TAG --
+0.0 iStartBlock INT a Humber of the first block that should be written (IN)
tZ.0 iNumBlocks INT a Humber of blocks that should be written (IN)
+4.0 iBlockSize INT 4 Elock size in bytes (IN)
+6.0 arrData ARRAT[1..128] Data to be write (IN)
*1.0 BYTE
=134.0 ENL:_STRUCT
+34Z 0| [FreeCommand STRUCT —-- FREE COMMAND --
+0.0 iCommandLength |(INT a Byte length of the free command (IN)
+z.0 arrCoumand ARPAYT[1..100] Command (3ICE Cola-i protocol without [STH]/[ETX] frawming) (IN)
*1.0 CHAR
+10z.0 iResultLength INT a Byte length of the free command result (0UT)
+104.0 arrBesult ARBAT[L1..100] Result (SICKE CoLi-A protocol) (0UT)
*1.0 CHAR
=Z04.0 ENL:_STRUCT
+E54E6 0| [ReadingResult STRUCT —-- READING RESULT --
t0.0 nCounter ETTE Bf1lef0 This counter is incremented if a new reading result has arrived (0UT)
tz.0 iLength INT a Evte length of the reading result (0UT)
t4.0 arrBesult ARBAT[L1..Z00] Beading result data (0UT)
*1.0 CHAR
=E04.0 END» STRUCT
=750.0 ENL:_STRUCT =~

Image 5: Structure of SICK RFH DATA DBs

Date: 29.04.2014 11

Technical Information

45.1 Mode

RFH6XxX PNDP
Function Block

SICK

The RFH can communicate only with one transponder at the same time. Therefore, reading
and writing orders are always executed in an address. In order to identify the transponders,
the UID (Unique Identifier) is being used.

In order to determine with which transponder the UID should communicate, the function
block supports two modes:

Mode 1: Itis always communicated with the transponder that is actually in the reading field.
This mode can only be used if there is exactly one tag in the field.
Mode 2: A from the user defined transponder-UID is used for the communication.

Parameter Declaration | Datatype | Description
Mode.bMode Input BOOL Address mode
FALSE: Mode 1 active
TRUE: Mode 2 active
Mode.arrUID Input/Output | INT Transponder Identification (UID)
In mode 1 the UID is read automatically

Date: 29.04.2014

Table 1: Mode Parameter

12

Technical Information

45.2 Lock block

RFH6XxX PNDP
Function Block

SICK

With the help of the Lock Block Action you have the possibility to save any block on the RFID
tag from re-writing. The block number has to be inserted via the parameter iLockBlock before
carrying out the function block action. The action locks the selected block permanently. A de-

blocking is not possible.

Parameter

Declaration

Data type

Description

iLockBlock

INPUT

INT

Number of the block that should be
prevented from re-writing.

4.5.3 Inventory

The Inventory Action searches in the entry area of the sensor for active transponders. For
each identified transponder (max. 5 transponders) the function block displays the following

information:
Parameter Declaration | Data type | Description
Inventory. Output INT Number of identified transponders
iNumRetTags
Inventory. Output BYTE Transponder Errorcode (see RFH
arrTaginfo[].nError operation manual)
Inventory. Output BYTE RSSI (signal strength of the identified
arrTaginfo[].nRSSI transponder)
Inventory. Output BYTE DSFID of the identified transponder
arrTaginfo[].nDSFID
Inventory. Output ARRAY | UID of the identified transponders in
arrTaginfo[].arrUID [1..8] HEX-format

OF BYTE

Date: 29.04.2014

13

RFH6XxX PNDP
Technical Information Function Block SICK

4.5.4 Read Tag

The Read Tag action reads a defined data area of the tag. This action can only be done for
one tag. With which transponder should be communicated, depends on the selected mode
(see chapter 4.5.1).

Before the reading you have to decide which blocks on the transponder should be read. After
a successful reading, the byte length of the read data as well as user data are stored.

Parameter Declaration | Data type | Description
ReadTag. Input INT Block number at which the reading
iStartBlock should be started
ReadTag. Input INT Number of blocks that should be read
iNumBlocks
ReadTag. Output INT Length of the read content in bytes
iDataLength
ReadTag.arrData Output ARRAY Content of the read blocks

[1..128]

OF BYTE

Table 2: Read Tag Parameter

4.5.5 Write Tag

The Write Tag function writes onto a defined data area of a tag. The action can only be done
for one tag. With which transponder should be communicated, depends on the selected
mode (see chapter 4.5.1).

Before the writing you have to decide, at which block the writing starts and how many blocks
should be read. Since the length of a block can differ, depending on the type of tag, it also
has to be inserted (see information of the tag fabricant).

Parameter Declaration | Data type | Description
WriteTag. Input INT Block number at which the writing
iStartBlock should be started
WriteTag. Input INT Number of blocks that should be written
iNumBlocks
WriteTag. Input INT Byte size of a block
iBlockSize
Valid value area:
[4,8,12,16,...]
WriteTag.arrData Input ARRAY | Data that should be written into the
[1..128] | transponder blocks.

OF BYTE
Table 3: Write Tag Parameter

Date: 29.04.2014 14

Technical Information

4.5.6 Free Command

With the help of a free command you have the possibility to communicate via a valid CoLa
command with the RFH. Hence it is necessary to store the command in the parameter
“arrCommand” of the structure “FreeCommand”. The character length of the transferring
command is written in the parameter “iCommandLength”. The commands can be looked up
in the device description or SOPAS-ET.

RFH6XxX PNDP
Function Block

SICK

Parameter Declaration | Data type | Description
FreeCommand. Input INT Character length of the transferring
iCommandLength ColLa command.
Valid value area
[1..100]
FreeCommand. Input ARRAY Free selectable CoLa command
arrCommand [1..100] (commands see device documenta-
OF CHAR | tion).
FreeCommand. Output INT Byte length of the receiving ColLa tel-
iResultLength egram.
FreeCommand. Output ARRAY Received answer of the sent CoLa
arrResult [1..100] telegram.
OF CHAR

Table 4: Free Command Parameter

4.5.7 Reading Result

In the array “ReadingResult.arrResult” data is stored, which is sent via trigger order
(TRIG_ON, TRIG_OFF) or directly from the device (e.g. direct trigger via a light switch). The
output parameter RD_DONE signalizes whether data has been received.

Parameter Declaration | Datatype | Description
ReadingResult. Output BYTE The receipt counter is incremented by
nCounter one as soon as a new read result has
been received.
Value area:
[0x00..0xFF]
ReadingResult. Output INT Byte length of the receiving read re-
iLength sult.
ReadingResult. Output ARRAY Receiving answer of a trigger signal
arrResult [1..200] (can be defined via the SOPAS output
of BYTE format).

The maximal length of the receiving
data is 200 Bytes. Chapter 4.6 de-
scribes the procedure when receiving
longer data telegrams.

Date: 29.04.2014

Table 5: Reading Result Parameter

15

RFH6XxX PNDP
Technical Information Function Block SICK

4.6 Receipt of read results > 200 Byte

The function block is laid out to receive read results up to a length of 200 Bytes. If longer
data has to be received, the routine has to be changed at the following positions:

Change in SICK RFH DATA UDT:

In the delivered UDT (DB73) the length of the array “ReadingResult.arrResult” has to be
adapted in such a way, that the read result which has to be received fits into the data area of
the variable.

+4Z6.0 |ReadingResult. STRUCT -- READING RESULT --
+0.0 nCounter EYTE EBELleg0 Thisz counter is incremented if a new reading result has arriwved (0UT)
+tZ.0 ilength INT 0 Byte length of the reading result (0UT)
+4.0 arrBesult APBBAY[1l. . Z00] Leading result data (00T}
*1.0 CHAL
=EZ04.0 END_STRUCT

Image 6: Receipt of read results > 200 Bytes (change in the UDT)

Change in the SICK RFH6XX PNDP function block:

In the static area of the variable survey, the length of the variable “arrRecord” has to be
adapted in such a way, that the read result fits into the data area of the variable. The array
must not be below a length of 500 bytes, but it has to be larger or equal to the length of the
“ReadingResult.arrResult”.

Contents 0f: "Environment\Interface%STAT"
E--@ Interface |Name Data Type |hddress Initial Value | =

H-40 I ‘Bl iReqlength | Int 30.0 0

:D' ouUT 'él_d arrCommand |Array [1..500] Of Byte 3.0

:[j- IN_OUT & arrRecord [Array [1..500] Of Byte | 532 .0

:E' STAT fbCCOM SICE CCOM ENDE 1032.0

&-f@ TEME g £ETON TON 1404_0 -
4 111} 3

Image 7: Receipt of read results > 200 Bytes (change in the FB declaration)

The new defined array lengths have to be inserted into the network 3 of SICK RFH6XX
PNDP function block.

Date: 29.04.2014 16

RFH6XxX PNDP
Technical Information Function Block SICK

= m : CONFIGURATION

— Configure the length of the "Record™ array

— Configure the length of the "Command"™ array

— Configure the length of the "Beading Besult™ array
— Configure [STX]/[ETX] framing flag

PLERSE NOTE:
"Becord"” array »= "Command"™ array
"Record"™ array *= "Reading Besult™ array

//-— LENGTH OF THE RECORD RRRAY
L 500

T fidrrayBeclen

//—— LENEZTH OF THE COMMAND ARBRY
L 500
T fidrrayComlen

//-- LENGTH OF THE READING RESULT ARRAY

T fifrrayBeadLen

/== FRRMINGE
SET £/ Bdd framing
= tbhddFraming

/#—— RESET RERDING RESULT FLAG
CLR
= §RD DONE

Image 8: Receipt of read results > 200 bytes (change in the UDT code)

After the change the instance of the function block has to be updated. Afterwards the
changed UDT as well as the function block have to be transferred to the PLC together with
the updated instance.

Date: 29.04.2014 17

Technical Information

5 Parameter

RFH6XxX PNDP
Function Block

SICK

Parameter Declara- | Data Storing Description
tion type area
EN INPUT | BOOL I,M,D,L, Enable entry (KOP and FUP)
Const.
IN_ADDR INPUT WORD I,M,D,L, Projected starting address of the E-area
Const. of the chosen module.
IN_LEN INPUT | INT I,M,D,L, Length of the used input module in the
Const. hardware configuration.
Valid value area: [8..128]
OUT_ADDR |INPUT |[WORD |I,M,D,L, Projected starting address of the A-area
Const. of the chosen module.
OUT_LEN INPUT INT I,M,D,L, Length of the used output module in the
Const. hardware configuration.
Valid value area: [8..128]
CAN_ID INPUT | INT I,M,D,L, CAN-ID of the sensor to be contacted.
Const.
If no CAN network is used, the CAN-ID
=0
The master resp. multiplexer is always
contacted with CAN-ID = 0, even if an-
other CAN-ID is assigned.
TOUT INPUT | TIME I,M,D,L, Time after which a timeout error is pro-
Const. voked.
START_REQ |INPUT |BOOL I,M,D,L Positive edge:
Carrying out the selected function block
action.
TRIG_ON INPUT BOOL I,M,D,L, Function block action: Carrying out a
Const. device trigger (open trigger window)
TRIG_OFF INPUT |BOOL I,M,D,L, Function block action: Carrying out a
Const. device trigger (close trigger window)
The from the device sent result
(SOPAS output format) is stored in the
variable ,ReadingResult.arrResult” of
the data structure (DB73).
RD_TAG INPUT |BOOL I,M,D,L, Reading out tag contents:
Const.
Therefore it is necessary that the pa-
rameters in the structure ,ReadTag" are
assigned with valid values (see chapter
4.5.4).
Which transponder should be read de-
pends on the selected address mode
(see chapter 4.5.1).

Date: 29.04.2014

18

Technical Information

Function Block SICK

Parameter

Declara-
tion

Data
type

Storing
area

Description

WR_TAG

INPUT

BOOL

I,M,D,L,
Const.

Writing tag contents.

Therefore it is necessary that the pa-
rameters of the structure ,WriteTag" are
assigned with valid values (see chapter
4.5.5).

Which transponder should be written
depends on the selected address mode
(see chapter 4.5.1).

INVENTORY

INPUT

BOOL

I,M,D,L,
Const.

Searches for active transponders in the
entry area and transmits their UID,
DSFID and RSSI (signal strength).

LOCK_
BLOCK

INPUT

BOOL

I,M,D,L,
Const.

Prevents a defined block from re-
writing.

This requires that the parameter
iLockBlock in the transferring data func-
tion block has a valid block number
(see chapter 4.5.5).

This action blocks the selected block
permanently. A de-blocking is not pos-
sible.

STAY_QUIT

INPUT

BOOL

I,M,D,L,
Const.

Mutes the RFID tag which is in the field.

This action can only be done if the HF-
field of the RFID device is switched on
permanently (see SOPAS - Tran-
sponder communication = HF-Feld).

COM_TEST

INPUT

BOOL

I,M,D,L,
Const.

Carrying out of a communication test.

REQ_DONE= TRUE:
Communication OK

REQ_DONE= FALSE:
Communication not OK

FREE_
COMMAND

INPUT

BOOL

I,M,D,L,
Const.

Function block action: Carrying out a
free command.

This requires that the UDTs (DB73) in
the structure (FreeCommand) as well
as the parameters iCommandLength
and arrCommand contain valid data
(see chapter 4.5.6).

After a successful transfer
(REQ_DONE=TRUE) the command
reply is available in the RESULT area of
the function block.

Date: 29.04.2014

19

Technical Information

RFH6XxX PNDP
Function Block

SICK

Parameter Declara- | Data Storing Description
tion type area
RESET INPUT |BOOL I,M,D,L, Resets the communication to the de-
Const. vice.
DATA INPUT |BLOCK |Const. Transfer of the respective UDT which is
DB necessary for the configuration of the

function block and for storing the read
results (DB73).

RD_DONE OUTPUT | BOOL Q,M,D,L Positive edge:
New read result is received.

REQ_DONE |OUTPUT |BOOL Q.M,D,L Indicates if the chosen function block
action can be carried out without error.
TRUE: processing terminated
FALSE: processing not terminated

REQ BUSY |OUTPUT |BOOL Q,M,D,L Request is in process.

ERROR OUTPUT | BOOL Q.M,D,L Error Bit:
0: No error
1: Break-off with error

ERROR OUTPUT | WORD Q,M,D,L Error status (see error codes)

CODE

ENO OUTPUT | BOOL Q.,M,D,L Enable output

Date: 29.04.2014

Table 6: Function block parameter

20

Technical Information

RFH6XxX PNDP
Function Block

6 Error Codes

The parameter ERRORCODE contains the following error information:

SICK

Error code | Short Description Description
W#16#0000 | No error No error
W#16#0001 | Timeout error Order has not been finished within the chosen
timeout.
This could be because of:
- Device is not connected with PLC
- Wrong communication parameter
- CAN-Bus participant is not available
W#16#0002 | Internal function block error | Internal function block error
W#16#0003 | No or more than one func- | Only one function block action can be carried
tion block action selected out at the same time
W#16#0004 | Received read result > The received read result is longer than 200
Reading Result Array bytes. For the receipt of longer read results,
please have a look at chapter 4.6
W#16#0005 | 100 < FreeCommand. Invalid length of the free command
iCommandLength <=0
Valid value error:
[1...100]
W#16#0006 | Answer of the free com- The answer to the sent free command is longer
mand > 100 Byte than 100 Byte.
W#16#0007 | 63 <CAN_ID <0 Invalid CAN-ID
Valid value area:
[0..63]
W#16#0008 | Reserved Reserved
W#16#0009 | Communication error Communication to the device cannot be real-
ized.
This could be because of:
- Invalid E/A addresses
- Invalid length of E/A addresses
- A telegram > arrRecord has been received
W#16#XXO0A | Device error A device error has come up ('sFA XX’)
XX = device error (see device documentation)
W#16#000B | Invalid command answer The selected action has not been carried out.

This could be because of:

- Wrong trigger setting in the SOPAS device

configuration

Device is not in ,Run-Mode*

Tag not long enough in the field

- Access to a not existing tag area (check pa-
rameters iStartBlock and iNumBlocks)

- Invalid UID (Check Mode.arrUID)

Date: 29.04.2014

21

Technical Information

RFH6XxX PNDP
Function Block

SICK

Error code | Short Description Description
W#16#000C | Reserved Reserved
W#16#000F
W#16#0010 | Tags in the field > 5 Inventory cannot be carried out since more than
(Inventory) 5 transponders are in the reading field of the
RFH.
W#16#0011 | ReadTag.iStartBlock <0 Invalid reading start (Read Tag)
W#16#0012 | 32 < ReadTag. Per action call up max. 128 Byte transponder
iNumBlocks <=0 data can be read out (32 blocks, 4 Byte each).
Valid value area:
[1..32]
W#16#0013 | Content to be read > 128 Per action call up max. 128 Byte data can be
Byte read.
In order to read more than 128 Byte data, the
action RD_TAG has to be carried out several
times after each other.
W#16#0014 | WriteTag.iStartBlock <0 Invalid parameter.
Valid value area:
[0.. Max Number of transponder blocks]
W#16#0015 | 32 < WriteTag. Per action call up max. 128 Byte transponder
iNumBlocks <=0 data can be written (32 blocks, 4 Byte each).
Valid value area:
[1..32]
W#16#0016 | WriteTag.iBlockSize <> Invalid block size.
4,8,12,16,...
Valid value area:
[4,8,12,16,...]
W#16#0017 | Content to be written > 128 | Per action call up max. 128 Byte data can be
Byte written.
In order to write more than 128 Byte data, the
action RD_TAG has to be carried out several
times after each other.
W#16#0018 | iLockBlock <0 Invalid iLockBlock parameter

Valid value area:
[0.. Max number of transponder blocks]

Date: 29.04.2014

22

RFH6XxX PNDP
Technical Information Function Block SICK

Error code | Short Description Description

W#16#XX19 | Transponder error A transponder error has come up.
XX = Transponder- / Device errors

Transponder errors:

16#00: No error

16#01: Command not supported
16#02: Command nor recognized
16#03: Option not supported
16#0F: Unknown error

16#10: Block not available
16#11: Block already locked
16#13: Block write error

16#14: Block lock error

Device errors:

16#1E: Unknown error

16#1F. CRC error

16#20: Parity error

16#21: Timeout error

16#22: No response error
16#23: Collision error

16#24: Content check error
16#25: Framing error

16#26: Verify error

16#27: Transmit error

16#28: Receive error

16#29: Non addressed error
16#2A: Tag type selection error
16#2B: Max block count error
16#2C: Block length mismatch error
16#46: Slot detect warning

For further error codes please have a look at the
device description.

W#16#001A | No tag in the field There is no tag in the entry area of the RFH.
W#16#001B | More than one tag in the There is more than one tag in the entry area of
field the RHF. This error can only come up in Mode
1

Table 7: Error Codes

Date: 29.04.2014 23

Technical Information

7 Examples

RFH6XxX PNDP
Function Block

SICK

Image 9 shows an example of a circuit of RFH6XX FBs. The logical input and output address
starts with Byte 258 (W#16#102). The length of the module projected in the hardware config-
uration is 32 Bytes. Since the RFH is not in a CAN network, a zero is fixed as CAN-ID.

Program selection:

Network 2 :

CALL SICE RFH PHNDP FUNCTION EBLOCKE

Comment. :

CALL
IN_iDDR
IN_LEN
OUT_ADDE
OUT_LEM
CAN_ID
TOUT
START_REQ
TRIG_ON
TRIG_OFF
ID_TAG
WE_TAG
INVENTORY
LOCK_ELOCK
STAY_QUIET
COM_TEST
FREE_COMMAND:
RESET
DATA
BD_DONE
REQ_DONE
REQ_EUSY
ERROR
ERRORCODE

"SICKE PFH&XX PHDP"
c=WELEH10Z
=3E
t=TELEELI0E
1=3Z
t="iCanID"
=T#ES
:="hRacuesst"
c="bTriggeron"
c="bTrigger0f£f"
:="bRdTag"
:="bWrTag"
c="bInventory"
:="bLockElock"
c="bitayluic"
:="bComTest"

"bFreeConmard"
"hReset"

"SICE RFH DATA"
"bEdD one"
"bRegDone"
"bRegBuasy"
"bError"

'nErrorcode"

., "INSTANCE_FE73"

FET7Z J DEL17:=

Mile

Hlo.
Mlz.
Mlz.
Mlz.
Mlz.
Mlz.
M1z,
M1z,
Mlz.
M1z,
M1Z.

O M e PO -dm MO

DE7Z

Ml0
Ml0
Ml0
Ml0

-1
.z
i
_4

MIT14

Image 9: Example of a SICK RFH6XX PNDP function block

Slat DPID Order Mumber / Designation | Address O Address |
1 208 Chl Bits in 25E...287

2 224 Chl Bits out 25E... 257

3 B4 32 byte input con [0x40,0:29F) 4258...289

4 128 32 byte output con [0x80,049F) 1288, 289 I

Date: 29.04.2014

Image 10: Step7 Hardware projecting

24

RFH6XxX PNDP
Technical Information Function Block SICK

7.1 Reading out tag contents

First of all it has to be decided with which transponder you want to communicate with. If the
bit “Mode.bMode = FALSE” it is communicated with the transponder which is in the reading
area of the RFID sensor.

i Mode

{DBT3DEY 0.0 "SICK RFH DATA" Mode biade BOOL Ii false |

Image 11: Selection of the communication mode

Then it has to be defined, which contents should be read out of the transponder.

Start Block: 0

Number of Blocks: 2 (Number of blocks to be read)
N ========== Read Tag s=========
DE7IDEY T4 ("SICK RFH DATA" ReadTag.iStantBlock (DEC 0
DE7IDEVY 76 ("SICK RFH DATA" ReadTag.iNumBlocks (DEC 2

Image 12: Read Block Parameter

The reading action (bRdTag) is carried out as soon as the bit “bRequest” is triggered with a
positive edge.

N SICH, RFHEX Y PRDP Function Block Example

W 16 "iCaniD" DEC
M 100 "bReguest" BOCOL
Mo 102 "bRegDone" BOCOL
Mo 103 "bReqBuzy" BOCOL
Mo 104 "bError” BOOL
hy 14 "nErrarcocde” HEX

If Selection of the FB action to he executed

Mo121 "bTriggerCn” BOOL
Mo122 "bTriggerCff" BOOL
Mo 123 "bRdTag" BOOL
Mo 125 "l Tag" BOOL
Mo 127 “hirrventary” BOOL
M 130 "bLockBlock" BOOL
Mo 131 "hStaryCuit" BOOL
Mo 124 "bComTest" BOOL
Mo 1286 "bFreeCommand” BoOoL
Mo 120 "bReset" BOOL . falze

Image 13: Starting the function blocks

Date: 29.04.2014 25

Technical Information

RFH6XxX PNDP
Function Block

SICK

The reading action is finished as soon as the bit “oReqDone = TRUE” is signalized. The read
tag contents are available in the array “ReadTag.arrData” of the function block. The variable
“ReadTag.iDatalLength” indicates, how many bytes were received resp. are valid.

I Read Tag

DE73DEW 74 ("SICK RFH DATA" ReadTag.iStartBlock DEC i}
DE73DEW 76 ("SICK RFH DATA" ReadTag.iMumBlocks DEC 2
DE73DEW 78 ("SICK RFH DATA" ReadTag.iDatalength | DEC g
DET3IDBEE 80 ("SICH RFH DATA" ReadTag.arrData[1] CHARACTER =
DETIDBEE 81 ("SICH RFH DATA" ReadTag arrData[2] CHARACTER T
DETIDBEE 82 ("SICH RFH DATA" ReadTag arrDatal3] CHARACTER W
DETIDBEE 83 ("SICH RFH DATA" ReadTag arrDatald] CHARACTER !
0BE730BE 54 ("SICH RFHDATA" ReadTag.arrDatals] CHARACTER '
DBE73DBEE 85 ("SICH RFHDATA" ReadTag.arrDatalB] CHARACTER s
DBE73DBE 86 ("SICH RFHDATA" ReadTag.arrData(f] CHARACTER Les
DBEY3IDBEE 87 ("SICH RFH DATA" ReadTag arrDatal8] CHARACTER '
DETIDBEE 83 ("SICH RFH DATA" ReadTag arrData[@] CHARACTER Bt 600
DETIDBEE 89 ("SICH RFH DATA" ReadTag . arrData[10] CHARACTER Bt 600

Image 14: Read tag contents

7.2 Writing of tag contents

First of all it has to be decided with which transponder you want to communicate. If the bit
“Mode.bMode = TRUE” it is communicated with a given transponder, which UID is known in
advance (here: EO 04 01 00 06 D2 37 45).

i Mocle

DE73IDEX 0.0:"SICH RFH DATA" Mode bikiode BCOL true
DE73IDEE 2 ("SICK RFHDATA" Mode arrJiD[1] HEX B GRED
DE73IDEBE 3 ("SICK RFHDATA" Mode arrJiD[2] HEX Bl 604
DE73IDEBE 4 ("SICH RFHDATA" Mode arrJiD]3] HEX Bl B0
DE73IDEBE S5 ("SICH RFHDATA" Mode arrJiD[4] HEX B 6400
DE73IDEBE & ("SICH RFHDATA"Mode arrJiD[S] HEX B#1ER06
DE7IDEE 7 ("SICK RFHDATA"Mode arrlJID[E] HEX B#1ERDZ
DE7IDEE & ("SICK RFHDATA"Mode arrJID[7] HEX B#1E#37
DE7IDEE 9 ("SICK RFHDATA"Mode arrlJID[E] HEX Bl E4s

Image 15: Given transponder UlI

Then it has to be defined which contents should be written onto the tag and where it has to

be stored.

Date: 29.04.2014

26

RFH6XxX PNDP
Technical Information Function Block SICK

Start Block: 0

Number of blocks: 3 (Number of blocks to be written)

Block size: 4 (depends on the transponder)

Data: "Hello World’
i =========='fite Tay s=========
DBE7I.DEVY 205 "SICK RFH DATA" WriteTagiStartBlock : DEC
DE7I.DEVY 210 "SICK RFH DATA" WriteTagiMumBlocks : DEC 3
DE7IDEVY 212 "SICH RFH DATA" WhiteTag iBlockSize DEC 3
DE730BEBE 214 "SICK RFH DATA"\AriteTag.arrData[1] CHARACTER 'H
DE730BEBE 215 "SICK RFH DATA"\WiteTag.arrData[2] CHARACTER ‘et

DE7VIDEB 216 :"SICK RFH DATA" WriteTag arrDatalS3] CHARACTER T
DEVIDEE 217 "SICK RFH DATA" WriteTag arrDatal4] CHARACTER T

DE7VIDEB 215 "SICK RFH DATA" WriteTag arrData[S] CHARACTER ‘o’
DE7VIDEB 218 "SICK RFH DATA"WriteTag arrDatal6] CHARACTER t
DE7VIDEB 220 :"SICK RFH DATA"WriteTag.arrData[7] CHARACTER "
DE7VIDEE 221 "SICK RFH DATA"WriteTag arrDatalS] CHARACTER ‘o’
DE7VIDEB 222 "SICK RFH DATA"WriteTag.arrData[8] CHARACTER 't
DEVIDBEB 223 | "SICK RFH DATA" WriteTag.arrData[10] : CHARACTER T
DBEVIDBEB 224 | "SICK RFH DATA"WriteTag.arrData[11] CHARACTER o'

DEVIDBEB 223 "SICK RFH DATA"WriteTag.arrData[12] CHARACTER 20
Image 16: Write Block Parameter

The writing action (bWrTag) is carried out as soon as the bit “bRequest” is triggered with a
positive edge.

N SICK RFHEX X PRDP Function Block Example

WY 16 "iCaniD" DEC Lo

w100 "bRequest" BOOL .true |
Mo102 "bReghone" BOOL true

Mo 103 "hReqBusy" BOOL false
Moo104 "hErrar" Bl L falze

hy 14 "nErrorcocde” HEX WA BRO000
I Selection of the FB action to be executed

Moo121 "hTriggeron” BOOL false
Moo122 "hTriggeroff! BOOL false

Mo 123 "bRATag" BCOL false
Mo1245 "B Tag" BCOL true I
Mo127 "hlnwertary™ BOOL false

Mo 130 "blLockBlock" BCOL false

Mo 131 "hStayGut" BCOL false
Moo124 "biComTest" BCOL false

Mo 126 "bFreeCommand” Bl falze

Mo 120 "bRezet" BCOL false

Image 17: Starting the function block

The writing action is finished as soon as the bit “0ReqDone = TRUE”.

Date: 29.04.2014 27

	1 About this document
	1.1 Function of this document
	1.2 Target group

	2 General Information
	3 Hardware configuration
	3.1 Supported PLC
	3.2 Supported fieldbus gateways / sensors
	3.3 Configuration in Step7

	4 Description of Function Block
	4.1 Function block specification
	4.2 Operation Mode
	4.3 Behavior in the case of an error
	4.4 Timing
	4.5 Value transfer
	4.5.1 Mode
	4.5.2 Lock block
	4.5.3 Inventory
	4.5.4 Read Tag
	4.5.5 Write Tag
	4.5.6 Free Command
	4.5.7 Reading Result

	4.6 Receipt of read results > 200 Byte

	5 Parameter
	6 Error Codes
	7 Examples
	7.1 Reading out tag contents
	7.2 Writing of tag contents

