Technical Information

SICK

RFH6xX Function Block

Block Version V2.X

SICK RFH6XX TCP Function Block for
Siemens S7-Controls (Step7 V5.5)

SICK

Sensor Intelligence.

Table of contents

I o To UL o g T ST o [1o U L4 1= o | SR 3
1.1 Purpose of this dOCUMENTooiiiiii e e e e e 3
N 1= T (o 1= o | 01U o PSPPSR 3

2 General INTOIMALION 4

S Hardware CONFIQUIAtION ... e e e e e e r e e e e 5
3.1 SUPpPOrted PLC CONLIOIELSuvuiiii e e et s e e e e e e et e e e e e e eeennnes 5
3.2 Establishing @ CONNECTIONcovviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee et 5

v/ o] o Tod Qo F= 1Yot g1 o] {1 o PSP 8
4.1 BlOCK SPECITICALIONS.cceeieeeiiiie e e et s e s e e e e e e e et e e e e e e e eanane 8
4.2 OPErating PrHNCIPIE e et e e e e e e e e e ettt e e s e e e e e e aate e e aaaeeeannnes 9
4.3 RESPONSE L0 BITONS ...ueeeeiieenriia e e e eeteeentia s e e e e e eeneees i aa s e e eeeeensrsaa s e eeaeeennnrnaasaaeaeeeennnen 11
N T o 1 Vo SRR 11
I [N = N (=1] = SRR 12

A5 L IMOUE ... 13
T o Tox |l o] [T o U 14
G BN [17T o1 o Y PP 14
A5, 4 REAU TAG.....c e e e e e e e e ettt 15
A5 5 W T8 oo oo 15
4.5.6 Free COMMANGccooeiiieeeeeee e 16
4.5.7 REAAING FESUIL ..ottt e e e e e e e e e e e e e eara s 16
4.6 Receiving reading results > 200 DYLESoovvviiiiiiiiiiiiiiiiiiieeeeeeeeeeee et 17

S R L= 1]] TP PP PP PUPPPPPRUPPPIN 19

L =t 0] g oo Lo 1P 22

A == 1] o1 1= USSR 25
7.1 Reading tag CONTENT........coiiiiiiieieiie e 27
7.2 WIItING 1A CONENT.....ueii e e e e e e e e e et e e e e e e e e e e aatbaaaaeaaeas 28

Date: 29.04.2014 2

RFH6XxX TCP
Technical Information Function Block S|CK

1 About this document

Please read this chapter carefully before you start working with these operating instructions
and the SICK RFH6XX function block.

1.1 Purpose of this document

These operating instructions describe how to use the SICK RFH6XX TCP function block.
They are intended to guide technical personnel working for the machine manufacturer/operator
through the processes of configuring and commissioning the function block.

1.2 Target group

This Operation Manual is aimed for specialists, such as technicians and engineers.

Date of issue: 29.04.2014 3

RFH6XxX TCP
Technical Information Function Block S|CK

2 General information

The "SICK RFH6XX TCP" function block is used to facilitate communication between
a SIMATIC controller and a SICK RFH6xx RFID interrogator. The RFH6xx communicates
with the controller via a TCP connection.

The following figure shows how the function block is represented in the function block
diagram (FBD) view.

FB73
EFHeX BFID
function block
"S8ICE BFHEX TCPR"
.. = EN
.. = IL
.. =—{CAN_TID
.. = TOUT
.. =—{START_REQ
.. = TRIG 0N
.. = TRIG OFF
.. = FD_TA
.. =—WE_TAak
.. = INVENTORT
LOCE
.. == BLOCE D DONEf~ .
STAY REQ_DONEL. __
.. —{QUIET
REQ_BUSTL.
.. = COM TEET
ERROR|—_ .
FREE
. = COMMAND ERRORCODE|[—_ _ .
— DATA ENOL

Figure 1: SICK RFH6XX TCP function block

Block functions:

- Send a trigger command (CoLa' command) via the PLC

- Receive reading results (defined in SOPAS-ET" output format)

- Read and write transponder content

- Execute an inventory command (show all transponders in the read field)
- Permanent blocking of transponder blocks

- Execute a communication test

- Communicate via freely selectable CoLa commands (ColLa-A protocol)
- Address devices that communicate with each other via CAN bus

T.The command language (CoLa) is a protocol internal to SICK for communicating with SOPAS devices.
" SOPAS-ET is an engineering tool for configuring SICK sensors.

Date: 29.04.2014 4

RFH6XxX TCP
Technical Information Function Block SICK

3 Hardware configuration

3.1 Supported PLC controllers

The function block may only be operated with Simatic S7-300 and S7-400 controllers with
an integrated TCP interface. Communication via a communication processor (CP module) is
not supported.

3.2 Establishing a connection

A TCP connection to the sensor must be established before the function block can be used.
For S7 controllers with an integrated IE interface, Siemens provides the following
communication blocks (Standard Library > Communication Blocks):

- FB65 (TCON): To establish a TCP connection

- FB65 (TDISCON): To close down a TCP connection
- FB63 (TSEND): To send data

- FB64 (TRCV): To receive data

Figure 2 shows the FB65 call with the associated instance (DB65) in OB1. When the
controller starts up, OB100 is executed once. The start bit (REQ) of FB65 is set in OB100 to
establish the connection via FB65. Successful connection setup is indicated by the bit DONE
= TRUE. The connection parameters for establishing a connection are saved in a data
structure (UDT65).

The ID parameter of the TCON block and the instantiated UDT structure must be identical to
the ID of the SICK RFU TCP block.

Netywork 1 : HERSTELLEN EINER TCP VEREINDUNG | OPEN TCP CONNECTION

Hersztellen einer TCP Verbindung mittels FBEeS (TCOM)

Open TCP connection wia FE&E (TCON)

CALL "TCOMN" , "INSTANCE FEcL" FE&L / DEeL
REQ :="TCON_ PARMETER". COMNECT. REQ DEZ.DEXE4. 0
in t=WHLIEHL

DONE ="TCON_PARMETER".CONNECT.LONE DEZ.DEXE4.1
BUSY ="TCON_ PATMETER". CONNECT.BUEY DEZ.DEXEL. Z
ERROER ="TCON_PAFMETER".CONNECT.ELRROR DEZ.DEXE4. 2
STATUS :="TCON_ PARMETER"_ CONNECT.STATUS DEZ.DEWES

CONMECT:="TCON_PADMETER".CONMECT.TCON_PAPAMETER PEDEZ.DEXO. O

Figure 2: Using FB65 (TCON) to establish a TCP connection

The table below shows an example configuration of the UDT65.

Byte |Parameter Data type | Start value |Description
0-1 |block length WORD W#16#0040 | Length of the UDT65: 64 bytes (fixed)
2-3 |id WORD W#16#0001 | Reference to TCP connection.

This value must be identical to the
ID parameter at TCON (FB65) and to
the SICK RFH TCP (FB73) block.

N

connection_type |BYTE B#16#11 Connection type = TCP
5 active est BOOL TRUE Active connection establishment

Date: 29.04.2014 5

Technical Information

RFH6Xxx TCP
Function Block

SICK

Byte |Parameter Data type | Start value |Description
6 local_device id |BYTE B#16#02 Type of TCP connection
In this case:
Communication via the integrated
Ethernet interface for CPUs 315-2
PN/DP and 317-2 PN/DP
7 local_tsap_id_len |BYTE B#16#02 For connection type B#16#11 and
a passive end point
8 rem_subnet_id_ |BYTE B#16#00 Not used
len
9 rem_staddr _len |BYTE B#16#04 Length of the IP address of the station
(SICK device)
10 rem tsap id len |BYTE B#16#02 Fixed for connection type B#16#11
11 Next_staddr_len |BYTE B#16#00 Used length of the next_staddr
parameter (not used)
12 - |Local tsap_id Array - Number of the local port used:
27 [1..16] of
BYTE [1] = High byte of the port number used
represented in hex format
[2] = Low byte of the port number used
represented in hex format
[3..16] = B#16#00
28 - |rem_subnet id |Array - Not used
33 [1..6] of [1..16] = B#16#0
BYTE
34 - |Rem_staddr Array - IP address of the RFH
39 [1..6] of
BYTE For example: 192.168.10.15
[1] =B#16#C0 (192)
[2] = B#16#A8 (168)
[3] =B#16#0A (10)
[4] = B#16#0F (15)
[5-6] = B#16#00
40 - |Rem _tsap_id Array - Port number of connected RFH
55 [1..16]
of BYTE SICK communication port: 2112
(decimal)
[1] = B#16#08 (high byte)
[2] = B#16#40 (low byte)
[3..16] = B#16#0
56 - | Next_staddr Array - Not used
61 [1..6] of
BYTE [1..6] = B#16#0
62 - |spare WORD W#16#0000 | Not used
63

Please refer to the Step7 help system for a precise description of the UDT parameters.

Date: 29.04.2014

RFH6XxX TCP
Technical Information Function Block SICK

The function block will only work if there is an active TCP connection to the RFU. Figure 3
shows the Step7 diagnostics screen for open communication via Industrial Ethernet.
To access this screen, select "Module Status -> Diagnostics = Occupied Connection
Resources".

Diagnostics - Open Communication via Industrial Ethernet x|

Path [COLA_TCP_INTGRATEDNSIMATIC 300(11\CPU 3152 PN/DP

LConnections:
Stabug Remote IP address | Type
B8 Connection is established activ ey 'IHIIIIIII‘I 1921621013 TCP

r— Connection details:

Lacal IF address: 192.168.10.4
Local paort: 49159
Femate [P address: 1921681013
Remote port: 2112

Current connection establishment attempts: 0

Successful connection establishment attempts: 1

Bytes sent: 1215

Bytes received: 3936

Error meszage of last connection abort:

Error meszage of last connection establishment

atternpt:

iiose Update | Print... | Help |

Figure 3: Communication diagnostics

Date: 29.04.2014 7

Technical Information

4 Block description

Function Block

RFH6XxX TCP

SICK

The function block is an asynchronous FB, i.e., processing encompasses several function
block calls. This means that the block must be called in the user program on a cyclical basis.

The RFU block encapsulates the "SICK CCOM TCP" (FB13) function block, which facilitates
communication between the PLC and the sensor. FC10 (SICK COLA ACCESS) is used

internally to interpret CoLa telegrams.

4.1 Block specifications

Block number:
Block name:
Version:
Blocks called:

Data blocks used:

Block call:

Flags used:

Counters used:

Registers used:

Capable of multi-instancing:
Language used for block creation:
Step7 version:

FB73

SICK RFH6XX TCP

2.1

FB63 (TSEND)

FB64 (TRCV)

SFC20 (BLKMOV)

SFB4 (TON)

FB13 (SICK CCOM TCP)
FC10 (SICK COLA ACCESS)
DB73 (SICK RFH DATA)
Cyclical

None

None

AR1, AR2 (for multi-instance calls)
Yes

Step7 STL

Simatic Step7 V5.5

The system functions (SFCs) used in the function block must exist on the controller that is

being used.

If block numbers are changed, then the corresponding calls in the SICK RFH6XX TCP block

must be updated accordingly.

Date: 29.04.2014

RFH6XxX TCP
Technical Information Function Block SlCK

4.2 Operating principle

The following communication parameters must be specified before the RFH block can
be used:

ID: Connection ID of the TCP connection. The value specified here must be the same as for
the ID parameter of the TCON block and the instantiated UDT structure. See also Figure 3.

DATA: The data block (DB73) that accompanies the function block contains input and output
parameters for the supported block functions. The data block must be transferred to the
"DATA" input parameter of the function block.

Executable block functions:

- Trigger on - Uses a CoLa command to open the device reading gate

- Trigger off - Uses a CoLa command to close the device reading gate

- Readtag - Reads out the transponder data

- Write tag - Writes transponder data

- Inventory - The inventory function searches for active transponders in the
RFH reading range and returns their UIDs.

- Lock block - Permanent blocking of a selected transponder block

- Stay quiet - Mutes the RFID tag located in the field.

- Communication test > Checks whether the device can be contacted by sending
command "sRI0"
- Free command - Executes a freely selectable CoLa command

To execute a block function (TRIG_ON, RD_TAG, etc.), the desired function must first
be selected. Only one function can be executed at a time. The START_REQ parameter must
be triggered with a rising edge (signal change from logical zero to one) in order for the
function to be executed. Until a valid device response is received, the REQ_BUSY parameter
signals that a response is still pending.

If the block's REQ_ DONE output parameter = TRUE, it means that the function has been
successfully completed. If data was requested from the device during this function
(e.g., RD_TAQG), this data is copied to the relevant data area of the accompanying user data
block (DATA).

Data sent via a trigger command (TRIG_ON, TRIG_OFF) or directly by the device
(e.g., direct trigger via a photoelectric sensor) is stored in the data block
(ReadingResult.arrResult). For one PLC cycle, the RD_DONE output parameter indicates
that new data has been received. The data sent by the device can be changed or adapted in
SOPAS output format.

Date: 29.04.2014 9

RFH6xXx TCP
Technical Information Function Block SICK

Figure 4: SOPAS output format

Date: 29.04.2014 10

RFH6XxX TCP
Technical Information Function Block S|CK

4.3 Response to errors

If the function block has an incorrect input value or if the input has been connected incorrectly,
an error bit (ERROR) is set and an error code (ERRORCODE) is output. In this case, no further
processing is carried out. The diagnostic parameters (ERROR, ERRORCODE) of the function
block retain their values until a new command is started.

4.4 Timing
A

START_REQ ﬂ

RD Tag

v

v

REQ_DONE

A4

REQ_BUSY

v

ERROR !

A\

Figure 5: Timing diagram

1: Request triggered by rising edge at START_REQ

The desired function (RD_TAG in this case) must be selected at the same time/in advance.
Only one function may be selected at once; otherwise, the function will be aborted with
"ERROR".

2: Once all commands have been sent and all responses received, the function is terminated
with "REQ_DONE". If an error occurred during the function, the function is terminated with
"ERROR". "ERRORCODE" contains information on the error that occurred if the function is
aborted with "ERROR".

Date: 29.04.2014 11

Technical Information

4.5 Value transfer

The supplied data block "SICK RFH DATA" (DB73) contains input and output parameters for
all supported block functions. The data block can be renamed according to the user program.
The data structure has a fixed definition and may not be modified except for the last entry
(ReadingResult.arrResult) (see chapter 4.6: Receiving reading results > 200 bytes).

Function Block

RFH6XxX TCP

SICK

™ DB73 -- "SICK RFH DATA" -- SICK_RFHEXX_PNDP'\SIMATIC 300({

Type

Initial wvalue

STRUCT

+0.0(|Mode STRUCT -- MODE --
+0.0 bMode EOOL FALSE l: Use a fixed UID | 0O: Use the UID of the transponder in the field (IN)
+Z.0 arrUIl ARRAT[L..8] If bMode=1l, this UID will be used for a Pead/Write/Lock/Stay ¢quit job (IN/OUT)
*1l.0 BYTE
=10.0 END STRUCT
+10.0| |iLockBlock INT o Humber of the block that should be locked (IN)
+1z.0| |Inventory STRUCT —-- INVENTORY --
+0.0 iNunPetTags INT o Number of returned transponders (0UT)
+z.0 arrTagInfo ARRAY[1..5] Max. 5 transponder (0OUT)
*0.0 STDUCT
+0.0 nError EYTE Bfleg0 Error code (0UT)
+1.0 nRSET BYTE Ef1lef0 BE8T B¥ walue (0UT)
+Z.0 nDEFID BYTE Ef1lef0 DSFIDL (0UT)
+4.0 arrUID ARRAT[L..8] UIL {0UT)
*1l.0 BYTE
=lz.0 END STRUCT
=6Z.0 END_STRUCT
+74.0| |ReadTag STRUCT —- READ TAG --
+0.0 iStartBlock INT o Humber of the first block that should be read (IN]
+2.0 ilumElocks INT o Humber of blocks that should be read (IN)
+4.0 ilataLength INT o Content length in bytes (0UT)
+&.0 arrData ARBAT[1..128] Data to be read (0UT)
*1l.0 BYTE
=1l34.0 END STRUCT
+Z08.0| [WriteTag STRUCT —— WRITE Talk --
+0.0 iStartBlock INT x) Muwber of the first block that should be written (IN)
+Z.0 ilunBlocks INT x) Munber of blocks that should be written (IN)
+4.0 iBlockSize INT 4 Block size in bytes (IN)
+&.0 arrData ARRBAT[1..128] Data to be wrice (IN)
*1l.0 BYTE
=1l34.0 END STRUCT
+34Z2 0 [FreeCommand STRUCT —-- FREE COMMAND —-
+0.0 iCommandLength |INT [u] Evte length of the free command (IN)
+z.0 arrConmard ARBAT[1..100] Command (SICK ColLa-& protocol without [STX]1/[ETX] framing) (IN)
*1.0 CHAL
+10z .0 iResultLength INT a Byte length of the free command result (00T
+104.0 arrBesult ARBAT[1..100] Result (3ICK CoLi-A protocol) (0UT)
*1l.0 CHAR
=Z04.0 END STRUCT
+546. 0 [ReadingResult STRUCT —- READING RESULT --
+0.0 ntounter BYTE Ef1lef0 This counter is incremented if a new reading result has arriwved {(0UT)
+Z.0 iLength INT o Byte length of the reading result (0UT)
+4.0 arrResult ARBAY[1..Z00] Reading result data (0UT)
*1.0 CHAD
=Z04.0 END_STRUCT
=750.0 END STRUCT hal

Date: 29.04.2014

Figure 6: Structure of SICK RFH DATA user data DB

12

Technical Information

45.1 Mode

RFH6Xxx TCP
Function Block

SICK

The RFH can only communicate with a single transponder at any one time. For this reason,
read and write commands are always addressed. The function block uses the UID
(unigue identifier) to identify the transponder.

The function block supports two different modes in order to determine which transponder UID
is to be communicated with:

Mode 1: The system always communicates with the transponder which is currently in
the read field. This mode can only be used when precisely one tag is located within

the field.
Mode 2: A user-defined transponder UID is used for the purpose of communication.
Parameter Declaration | Datatype | Description
Mode.bMode Input BOOL Addressing mode
FALSE: Mode 1 active
TRUE: Mode 2 active
Mode.arrUID Input/Output | INT Transponder identifier (UID)
The UID is read out automatically in
Mode 1.

Date: 29.04.2014

Table 1: Mode parameters

13

Technical Information

45.2 Lock block

RFH6Xxx TCP
Function Block

SICK

The lock block function allows you to protect any block on the RFID tag by preventing it from
being overwritten. The block number is specified via the iLockBlock parameter before the
FB function is executed. The function permanently locks the selected block. The block

cannot be unlocked.

Parameter

Declaration

Data type

Description

iLockBlock

INPUT

INT

Number of the block to be locked

4.5.3 Inventory

The inventory function searches for active transponders within the receiving range of
the sensor. The function block provides the following information for each detected
transponder (max. 5 transponders).

Parameter Declaration | Data type | Description
Inventory. Output INT Number of detected transponders
iNumRetTags
Inventory. Output BYTE Transponder error code (see RFH
arrTaginfo[].nError operating instructions)
Inventory. Output BYTE RSSI (signal strength of detected
arrTaginfo[].nRSSI transponder)
Inventory. Output BYTE DSFID of detected transponders
arrTaginfo[].nDSFID
Inventory. Output ARRAY | UID of detected transponders in
arrTaginfo[J.arrUID [1..8] HEX format

OF BYTE

Date: 29.04.2014

14

RFH6XxX TCP
Technical Information Function Block S|CK

4.5.4 Read tag

The read tag function is used to read a defined data area of a tag. This function can only
ever be applied to one tag. The selected mode determines which transponder the system
communicates with (see chapter 4.5.1).

Prior to each read process, it is necessary to define which blocks are to be read out of
the transponder. Once the read process is successfully completed, the byte length of the
read data is stored in the user data DB along with the user data.

Parameter Declaration | Data type | Description
ReadTag. Input INT Number of block at which the read
iStartBlock process is to start
ReadTag. Input INT Number of blocks to be read
iNumBlocks
ReadTag. Output INT Length of read content in bytes
iDataLength
ReadTag.arrData Output ARRAY Content of read blocks

[1..128]

OF BYTE

Table 2: Read tag parameters

4.5.5 Write tag

The write tag function is used to write to a defined data area of a tag. This function can only
ever be applied to one tag. The selected mode determines which transponder the system
communicates with (see chapter 4.5.1).

Prior to each write process, it is necessary to define the block at which the write process

is to start and how many blocks are to be written. The block length of the transponder must
also be specified, because these changes depending on the tag type (see information from
tag manufacturer).

Parameter Declaration | Data type | Description
WriteTag. Input INT Number of block at which the write
iStartBlock process is to start
WriteTag. Input INT Number of blocks to be written
iNumBlocks
WriteTag. Input INT Block length in bytes
iBlockSize

Valid range:

[4,8,12,16,...]
WriteTag.arrData Input ARRAY | Data to be written to the transponder

[1..128] | blocks
OF BYTE

Table 3: Write tag parameters

Date: 29.04.2014 15

RFH6XxX TCP
Technical Information Function Block S|CK

4.5.6 Free command

The free command allows you to communicate with the RFH via a valid CoLa command.
For this to happen, the command must be stored in the "arrCommand" parameter of the
"FreeCommand" structure. The character length of the command to be transmitted is written
to the "iCommandLength" parameter. The commands can be obtained from the device
description or SOPAS-ET.

Parameter Declaration | Data type | Description
FreeCommand. Input INT Character length of the CoLa
iCommandLength command to be transmitted
Valid range
[1..100]
FreeCommand. Input ARRAY Freely selectable CoLa command
arrCommand [1..100] (for commands, see device
OF CHAR | documentation)
FreeCommand. Output INT Byte length of received ColLa telegram
iResultLength
FreeCommand. Output ARRAY Response to the transmitted ColLa
arrResult [1..100] telegram
OF CHAR

Table 4: Free command parameters

4.5.7 Reading result

The "ReadingResult.arrResult" array stores data that is sent via a trigger command (TRIG_ON,
TRIG_OFF) or directly from the device (e.g., direct trigger via photoelectric sensor).
The RD_DONE output parameter signals whether data has been received.

Parameter Declaration | Datatype | Description
ReadingResult. Output BYTE The receive counter is incremented by
nCounter one as soon as a new reading result
is received.
Value range:
[0x00...0xFF]
ReadingResult. Output INT Byte length of received reading result
iLength
ReadingResult. Output ARRAY Response to a trigger signal (can be
arrResult [1..200] defined via the SOPAS output format)
of BYTE
The maximum length of the received
data is 200 bytes. Chapter 4.6
describes the procedure for receiving
longer data telegrams.

Table 5: Reading result parameters

Date: 29.04.2014 16

RFH6XxX TCP
Technical Information Function Block S|CK

4.6 Receiving reading results > 200 bytes

The function block is designed to receive reading results up to a length of 200 bytes. If longer
data is to be received, the function block must be changed at the points indicated below.

Changes in SICK RFH DATA data block:
The length of the "ReadingResult.arrResult" array in the user data block supplied (DB73)
must be set so that the reading result to be received fits into the data area of the variable.

+4Z26.0 |ReadingResult STRUCT —- READINCG RESULT --
+0.0 nlounter EYTE EfLlcf0 This counter is incremented if a new reading result has arriwed (0UT)
+Z.0 iLength INT o Byte length of the reading result (0UT)
+4.0 arrfasult ARPAT[1..E00] Deading result data (0UT)
*1.0 CHLR
=z04.0 END_STRUCT

Figure 7: Receiving reading results > 200 bytes (change to data block)

Changes in SICK RFH6XX TCP function block:

In the static area of the variable overview, the length of the "arrRecord" variable must be
adapted so that the reading result fits into the data area of the variable. The array is not
allowed to be less than 500 bytes in length, but must be greater than or equal to the length of
"ReadingResult.arrResult".

Contents 0f: "EnvironmenthInterface\S5TAT"
E--@ Interface |Name Data Type |Address Initial Value
H-4 1N # iReglength | Int 2z.0]
CD- oUT 'I*\EF arrCommand | Array [1..500] Of Byte Z4.0
ﬂ- IN_OUT 'I*\EF arrBecord rray [1..500] Of Byte I 5z4.0
-ﬁ' STAT £bCC0oM SICK COM ICE 10z24.0
-4 TEME £bTON TON 1158.0

Figure 8: Receiving reading results > 200 bytes (change to function block declaration)

The newly defined array lengths must be entered into network 3 of the SICK RFH6XX TCP
function block.

Date: 29.04.2014 17

RFH6XxX TCP

Technical Information Function Block

= w : CONFIGURATION

- Configure the length of the "Record"™ array

— Configure the length of the "Command™ array

— Configure the length of the "Reading Besult™ array
— Configure [STX]/[ETX] framing flag

PLEASE NOTE:
"Record"™ array = "Commzsnd" array
"Record™ array = "Heading Result" array

//—-— LENGTH OF THE RECORD ARRARY
:
T filkrrayReclen

//f-— LENGTH OF THE COMMAEND ARRAY
L 500
T fikrrayComlen

//—— LENGTH OF THE RERDING RESULT ARRRY

L
T f1frrayReadlen

S —— FREMING
CLE 4 Bet telegram framing
= EbiddFraming

//—— BESET READING RESULT FLAG
CLR
= §ED DONE

SICK

Figure 9: Receiving reading results > 200 bytes (change to block code)

After modification, the instance of the function block must be updated. Subsequently,
the modified user data block and the function block must be transferred to the PLC again,
together with the updated instance.

Date: 29.04.2014

18

Technical Information

5 Parameters

RFH6Xxx TCP
Function Block

SICK

Parameter Decla- |Data Memory Description
ration type area
EN INPUT | BOOL [,M,D,L, Enable input (LD and FBD)
const.
ID INPUT WORD I,M,D,L, Connection ID for configured TCP
const. connection (see communication
diagnostics Figure 3 or ID parameter
TCON FB)
CAN_ID INPUT INT I,M,D,L, CAN ID of the sensor to be addressed
const.
If no CAN network is used, the CAN ID
is O.
The master or multiplexer is always
addressed with CAN ID 0, even if it has
been assigned another CAN ID.
TOUT INPUT TIME I,M,D,L, Period of time, after which a timeout
const. error is triggered
START_REQ |INPUT |BOOL I,M,D,L Rising edge:
Selected block function is executed
TRIG_ON INPUT |BOOL I,M,D,L, Block function: Execute a device trigger
const. (open trigger window).
TRIG_OFF INPUT BOOL I,M,D,L, Block function: Execute a device trigger
const. (close trigger window).
The result sent from the device
(SOPAS output format) is stored in the
"ReadingResult.arrResult" variable of
the user data DB (DB73).
RD_TAG INPUT BOOL I,M,D,L, Block function: Read tag content.
const.
This function only works if the parameters
of the "ReadTag" structure for the
transferred data block have been
assigned valid values (see chapter 4.5.4).
The selected addressing mode
determines which transponder is to
be read (see chapter 4.5.1).
WR_TAG INPUT BOOL I,M,D,L, Block function: Write tag content.
const.
This function only works if the parameters
of the "WriteTag" structure for the
transferred data block have been
assigned valid values (see chapter 4.5.5).
The selected addressing mode
determines which transponder is to be
written to (see chapter 4.5.1).

Date: 29.04.2014

19

Technical Information

RFH6Xxx TCP
Function Block

SICK

Parameter

Decla-
ration

Data
type

Memory
area

Description

INVENTORY

INPUT

BOOL

I,M,D,L,
const.

Searches for active transponders within
the receiving range and indicates their
UID, DSFID, and RSSI signal strengths

LOCK_
BLOCK

INPUT

BOOL

I,M,D,L,
const.

Protects a defined block by locking it so
that it cannot be overwritten

This function only works if a valid block
number has been assigned to the
iLockBlock parameter in the data block
being transferred (see chapter 4.5.5).

The function permanently locks the
selected block. The block cannot be
unlocked.

STAY_QUIET

INPUT

BOOL

I,M,D,L,
const.

Mutes the RFID tag located in the field

This function can only be used if

the HF field of the RFID device is
permanently switched on (see SOPAS -
Transponder Communication -

HF Field).

COM_TEST

INPUT

BOOL

I,M,D,L,
const.

Block function: Execute a
communication test.

REQ_DONE = TRUE:
Communication OK

REQ_DONE = FALSE:
Communication not OK

FREE_
COMMAND

INPUT

BOOL

LM,D,L,
const.

Block function: Execute a free command.

This function only works if valid data
has been assigned to the
iCommandLength and arrCommand
parameters in the structure
(FreeCommand) within the user data
block (DB73) (see chapter 4.5.6).

Following successful transfer,

the command response (REQ_DONE =
TRUE) is made available in the
RESULT area of the data block.

DATA

INPUT

BLOCK_
DB

Const.

Transfers the accompanying user data
block that is required to configure the
block functions and store the reading
results (DB73)

RD_DONE

OUTPUT

BOOL

QM,D,L

Rising edge:
New reading result received

Date: 29.04.2014

20

Technical Information

RFH6Xxx TCP
Function Block

SICK

Parameter Decla- |Data Memory Description
ration type area

REQ_DONE |OUTPUT |BOOL Q.M,D,L Indicates whether the selected block
function has been successfully completed
TRUE: Successfully completed
FALSE: Not completed

REQ BUSY |OUTPUT |BOOL Q.M,D,L Command in progress

ERROR OUTPUT | BOOL Q.M,D,L Error bit:
0: No error
1: Aborted with error

ERROR OUTPUT | WORD Q,M,D,L Error status (see "Error codes")

CODE

ENO OUTPUT | BOOL Q.,M,D,L Enable output (LD and FBD)

Date: 29.04.2014

Table 6: Block parameters

21

Technical Information

RFH6Xxx TCP
Function Block

6 Error codes

The ERRORCODE parameter contains the following error information:

SICK

Error code | Brief description Description
W#16#0000 | No error No error
W#16#0001 | Timeout error Command could not be executed within the
selected timeout period
Possible causes:
- Device is not connected to the PLC
- Incorrect communication parameters
- CAN bus station not present
W#16#0002 | Internal block error Internal block error
W#16#0003 | No block function selected, | Only one block function can be executed at
or more than one block atime.
function selected
W#16#0004 | Received The reading result received is longer than
reading result > reading 200 bytes. See chapter 4.6 for information on how
result array to receive longer reading results.
W#16#0005 | 100 < FreeCommand. Length of free command is invalid
iCommandLength <=0
Valid range:
[1...100]
W#16#0006 | Free command response | The response to the free command sent is longer
> 100 bytes than 100 bytes.
W#16#0007 | 63 <CAN_ID <0 Invalid CAN ID
Valid range:
[0..63]
W#16#0008 | Reserved Reserved
W#16#0009 | Communication error Communication could not be established with
the device.
Possible causes:
- Invalid ID parameter
- Connection not established
- A telegram > arrRecord was received.
WH#16#XX0A | Device error A device error occurred ("sFA XX").

XX = device error (see device documentation)

Date: 29.04.2014

22

Technical Information

RFH6Xxx TCP
Function Block

SICK

Error code | Brief description Description
W#16#000B | Invalid command The selected function was not executed.
response
The following causes are possible, depending on
the function:
- Incorrect trigger setting in the SOPAS device
configuration
- Device is not in "Run mode"
- Tag not long enough in field
- Attempt to access a non-existent tag area
(check iStartBlock and iNumBlocks parameters)
- Invalid UID (check Mode.arrUID)
W#16#000C | Reserved Reserved
W#16#000F
W#16#0010 | Tags infield >5 Inventory cannot be executed because there
(Inventory) are more than 5 transponders in the read field
of the RFH.
W#16#0011 | ReadTag.iStartBlock <0 | Invalid start of reading (read tag)
W#16#0012 | 32 < ReadTag. A maximum of 128 bytes of transponder data can
iNumBlocks <=0 be read per function call (32 blocks of 4 bytes).
Valid range:
[1..32]
W#16#0013 | Content to be read > A maximum of 128 bytes of data can be read per
128 bytes function call.
The RD_TAG function must be executed several
times in succession in order to read more than
128 bytes of data.
W#16#0014 | WriteTag.iStartBlock <0 Invalid parameter
Valid range:
[0 .. max. number of transponder blocks]
W#16#0015 | 32 < WriteTag. A maximum of 128 bytes of transponder data can
iNumBlocks <=0 be written per function call (32 blocks of 4 bytes).
Valid range:
[1..32]
W#16#0016 | WriteTag.iBlockSize <> Invalid block size
4,8,12,16,...
Valid range:
[4,8,12,16,...]
W#16#0017 | Content to be written > A maximum of 128 bytes of data can be written

128 bytes

per function call.

The WR_TAG function must be executed several
times in succession in order to write more than
128 bytes of data.

Date: 29.04.2014

23

Technical Information

Function Block SICK

Error code

Brief description

Description

W#16#0018

iLockBlock < 0

Invalid iLockBlock parameter

Valid range:
[0 .. max. number of transponder blocks]

W#16#XX19

Transponder error

A transponder error has come up.
XX = Transponder- / Device errors

Transponder errors:

16#00: No error

16#01: Command not supported
16#02: Command nor recognized
16#03: Option not supported
16#0F: Unknown error

16#10: Block not available
16#11: Block already locked
16#13: Block write error

16#14: Block lock error

Device errors:

16#1E: Unknown error

16#1F:. CRC error

16#20: Parity error

16#21: Timeout error

16#22: No response error
16#23: Collision error

16#24: Content check error
16#25: Framing error

16#26: Verify error

16#27: Transmit error

16#28: Receive error

16#29: Non addressed error
16#2A: Tag type selection error
16#2B: Max block count error
16#2C: Block length mismatch error
16#46: Slot detect warning

For further error codes please have a look at the
device description.

W#16#001A

No tag in field

There are no tags in the receiving range of
the RFH.

W#16#001B

More than one tag in field

There is more than one tag in the receiving range
of the RFH. This error can only occur in Mode 1.

Table 7: Error codes

Date: 29.04.2014

24

RFH6XxX TCP
Technical Information Function Block SICK

7 Examples

Figure 12 shows an example of a connected SICK RFH6XX TCP function block. The TCP
connection to the SICK sensor is established with FB65 (TCON) during PLC startup
(see Figure 10 / Figure 11). A zero is entered for the CAN ID because the RFH is not
operating on a CAN network.

Program call:

oploo - "Complete Restart"

Comment :

m: TCP VEFBEINDUNG HERSTELLEN | ESTABLISHing A TCP COMNECTION

Herstellen einer TCP Verbindung nach jedem S5P5 restart.

Open TCP connection after ewvery PLC restart.

SET
= "TCON_PAPMETER"_ CONMECT. REQ DEEZ_DEXE4 0O

Figure 10: Start of the connection setup in OB100

Netvork 1 : HERETELLEN EINER TCP VEREINDUNG | OPEN TCP COMNECTION

Herztellen =iner TCP Verbindung mittels FESES (TCON)

Open TCP comnection wia FE&S (TCON)

S¢ SET IF ADDRESE OF THE RFU

L 12z

T "TCON PAPAMETER".CONMECT.TCON PAPAMETER.rem staddr[l]
L led

T "TCON PAPAMETER".CONMECT.TCON PAPAMETER.rem staddr[Z]
L 10

T "TCON PAPAMETER".CONMECT.TCON PAPAMETER.rem staddr[3]
L 152

T "TCON PAPAMETER".CONMECT.TCON PAPAMETER.rem staddr([4]

S4 SET ETHEPNET CONMECTION PORT OF THE EFU
L Z1lz
T DESS_DEW 40

CALL "TCoN" , DEleS

REQ :="TCON_ PARAMETER".CONMECT.REQ

I c=TELEEL

DOME ="TCON_PARAMETER" . CONNECT DONE

ETTET ="TCON_PARAMETER" . CONMNECT BUSY

ERROR ="TCON_PARAMETER" . CONNECT.ERROR

STATUS :="TCON_PARAMETER"_ CONMNECT. STATUS

CONNECT:="TCON_PARAMETER"_ CONMNECT.TCON_ PARAMETER
CLE

= "TCON_PAPAMETER"_ CONMECT.REQ

Figure 11: FB65 (TCON) call for creating a TCP connection

Date: 29.04.2014 25

Technical Information

RFH6Xxx TCP
Function Block

Netxwork 3 : CALL SICE RFH PNDP FUNCTION BLOCKE

Comment. :

CALL "SICK RFHeX TCP" , "INSTANCE FE73"
o =WHlcHEL
CaN ID i="iCanID"
TOuT =TH#ES

START_REQ bRequest"
TRIG_ON bTriggerin"
TRIG_OFF bTriggerO££"
LT _TAG :="bRdTag"
WE_TAG c="hWrTag"
INVENTORYT c="bInventory"
LOCE BLOCHE :="bLockElock"
STAYT QUIET :="bStayQuit'
COM TEST c="bComTest"

FREE_COMMAND:="bFresCommarnd"

DATA SICK PFH DATA"
LD _DONE LRdDone"
RE(Q_DONE bReghone"
RE(Q_BUSYT bRegBusy"
ERROR :="bError"
ERRORCODE i="nErrorcode"

FE73 / DEL72

Mirle

M10.
M1Z.
M1Z.
M1Z.
M1Z.
Mlz.
Mlz.
Mlz.
Mlz.
Mlz.
DE7Z
Mi0.1
Ml0.z
Mi0.3
M10.4
MTl4

T P O - MO

SICK

Figure 12: Example of a connected SICK RFH6XX TCP function block

Date: 29.04.2014

26

RFH6XxX TCP
Technical Information Function Block SICK

7.1 Reading tag content

First, it is necessary to determine which transponder the system is to communicate with. If bit
Mode.bMode = FALSE, then the system will communicate with the transponder that is
currently located in the RFID sensor's reading range.

Lir Mo

{DB73DEX 0.0 "SICK RFH DATA" Mode bMods ‘BOCL Ii false |

Figure 13: Selection of communication mode

Then, it is necessary to define what content is to be read out of the transponder.

Start block: 0

Number of blocks: 2 (humber of blocks to read)
N ========== Fead Tag s=========
DE7IDEYY T4 "SICK RFH DATA" ReadTag.iStartBlock (DEC 0
DE7IDEVY 76 "SICK RFH DATA" RescdTag.iMumBlocks : DEC 2

Figure 14: Read tag parameters

The reading function (bRdTag) is executed as soon as the "bRequest" bit is triggered with
a rising edge.

N SICH RFHERR TCP Function Block Example

M 16 “iCaniD" DEC o
w100 "bRequest” BOOL utrue I
M 102 "hRenDone" BOOL

M 103 "hRenBusy" BOOL

M 104 "Error BOOL 5

M 14 "rErrorcode” HEX WRIE#0000

I Selection of the FB action to be execute

M2 "BTriggerCn" BCOL
Moo122 "bTriggerCff" BCOL
Mo123 "bRdTag" BCOL |
Mo125 "y Tag" BCOL
Moo127 "hlrevertory BOOL
Mo 130 "bLockBlock" BCOL
Mo 131 "hStay Quit" BCOL
Moo12.4 "biComTest" BCOL
Mo 126 "bFreeCommand” Bl

Figure 15: Starting the block function

Date: 29.04.2014 27

Technical Information

RFH6Xxx TCP
Function Block

SICK

The reading function is completed as soon as bit bReqDone = TRUE. The read tag content is
available in the "ReadTag.arrData" array of the user data block. The "ReadTag.iDataLength"
variable specifies how many bytes have been received and are valid.

It Feadd Tag

DBE73.0EWVY 74 "SICH RFH DATA" ReadTag iStanBlock (DEC]
DBEY3.0EWVY 76 "SICH RFH DATA" ReadTag iMumBlocks {DEC 2
DBE73.0EWY 75 "SICH RFH DATA" ReadTag iDatsLength (DEC g
DEYSI.DBE 80 “SICH RFH DATAY ReadTag strDats(1] CHARACTER k=3
DEYI.DBEE &1 "SICH RFH DATA" ReadTag strDats(2] CHARACTER il
DEYI.DBE 82 “SICH RFH DATAY ReadTag srrDats(3] CHARACTER o
DEYI.DBE 83 "SICH RFH DATAY ReadTag strDats(4] CHARACTER W
DBY3.0BE 84 "SICH RFHDATA" ReadTag.srrDats(s] (CHARLCTER "
DBY3.0BE 85 ["SICH RFH DATA" ReadTag srrDats(B] (CHARLCTER a)
DBY3.0BE 86 "SICH RFH DATA" ReadTag.srrDats(7] (CHARLCTER L3
DBY3.DBE 87 "SICH RFH DATAY ReadTag strDats(8] CHARACTER "
DEYI.DBE 83 “SICH RFH DATA" ReadTag strDats(3] CHARACTER Bt 600
DEYS.DBE 89 “SICH RFH DATAY ReadTag strDats(10] CHARACTER Bt 600

Figure 16: Read tag content

7.2 Writing tag content

First, it is necessary to determine which transponder the system is to communicate with.
If bit Mode.bMode = TRUE, then the system will communicate with the specified transponder,
the UID of which must be known in advance (in this case: EO 04 01 00 06 D2 37 45).

it Mode

DBE7T3DEX 0.0 "SICK RFH DATA" Mode biode BCOL true
DEFIDEE 2 "SICK RFH DATA" Mode arrUIC[] HEX B#1ERED
DE7VIDEE 3 "SICK RFH DATA" Mode arrUIC[2] HEX B#1E#04
DE7VIDEE 4 | "SICK RFHDATA" Mode arrUIC[S] HEX B#1E#01
DEVIDEE 5 "SICK RFHDATA" Mode arrUIC[4] HEX B#1 600
DEVIDBEBE 6 "SICK RFH DATA" Mode arrUID[S] HEX B ER0E
DE7ZDEE 7 "SICK RFH DATA" Mode arrUID[E] HEX B#1 6402
DE7IDEE & "SICK RFHDATA" Mode arrUID[T] HEX B#1E6#37
DE7TIDEE 9 "SICK RFH DATA" Mode arrUID[S] HEX B E45

F

igure 17: Specification of transponder UID

Then, it is necessary to define what content is to be written to the tag and where it should

be stored.

Date: 29.04.2014

28

RFH6XxX TCP
Technical Information Function Block SICK

Start block: 0

Number of blocks: 3 (number of blocks to write)

Block size: 4 (transponder-dependent)

Data: "Hello World"
if ==========ite Tay ==========
DBE7I.DEVY 2058 "SICK RFH DATA" WiiteTag iStartBlock DEC 1]
DE7I.DEVY 210 "SICK RFH DATA" Wirite Tag iMumBlocks DEC 3
DE7IDEVY 212 "SICK RFH DATA" WiiteTag.iBlockSize (DEC &
DE730BEBE 214 "SICK RFHDATA"WhiteTag arrDatal1] CHARACTER 'H
DE7IDBEBE 215 "SICK RFH DATA"WhiteTag arrDatal2] CHARACTER ‘et

DE7VIDEB 216 :"SICK RFH DATA"WWrite Tag.arrData[3] CHARACTER T
DE7VIDEE 217 "SICK RFH DATA"WWriteTag.arrData[4] CHARACTER T

DE7VIDEB 215 "SICK RFH DATA"WriteTag.arrData[3] CHARACTER ‘o’
DE7VIDEB 218 "SICK RFH DATA"Write Tag.arrData[6] CHARACTER t
DBE7VIDEE 220 :"SICK RFH DATA"WWriteTag.arrData[7] CHARACTER "
DE7IDEE 221 "SICK RFH DATA"WWrite Tag.arrData[d] CHARACTER ‘o’
DE7VIDEE 222 "SICK RFH DATA"WWriteTag.arrData[9] CHARACTER 't
DE7VIDEB 223 "SICK RFH DATA"Write Tag.arrData[10] CHARACTER T
DE7VIDEE 224 "SICK RFH DATA"WWrite Tag.arrData[11] CHARACTER '

DE73DBEBE 225 ("SICK RFH DATA"WhiteTag arrDatal12] CHARACTER .
Figure 18: Write tag parameters

The write function (bWrTag) is executed as soon as the "bRequest" bit is triggered with
a rising edge.

N SICH RFHER X TCP Function Block Example

M 18 "iCaniD" DEC S0

M 100 "bRequest" BOOL |. true |
Mo102 "bReghone” BOOL true I
Mo 103 "hRegBusy" BOOL 0 false

Mo 104 "bError” BOOL 1 talse

Wi 14 "nErrorcode” HEX. AR ER0000

! Selection of the FB action to be execute

Moo121 "hTriggeron” BOOL falze
Moo122 "bTriggerOff" BOOL falze
Mo123 "bRdTag" BCOL falze
Moo125 "B Tag" BCOL true I
Moo127 "blnvertory" BOOL falze
Mo 130 "bLockBlock" BCOL falze
Mo131 "bStayCuit" BCOL falze
Moo12.4 "biZomTest" BCOL falze
o126 "bFreeCommand” Bl :. false

Figure 19: Starting the block function

The write function is completed as soon as bit bReqDone = TRUE.

Date: 29.04.2014 29

	1 About this document
	1.1 Purpose of this document
	1.2 Target group

	2 General information
	3 Hardware configuration
	3.1 Supported PLC controllers
	3.2 Establishing a connection

	4 Block description
	4.1 Block specifications
	4.2 Operating principle
	4.3 Response to errors
	4.4 Timing
	4.5 Value transfer
	4.5.1 Mode
	4.5.2 Lock block
	4.5.3 Inventory
	4.5.4 Read tag
	4.5.5 Write tag
	4.5.6 Free command
	4.5.7 Reading result

	4.6 Receiving reading results > 200 bytes

	5 Parameters
	6 Error codes
	7 Examples
	7.1 Reading tag content
	7.2 Writing tag content

