Technical Information

SICK

RFH6xX Function Block

Block Version V2.X

SICK RFH6XX PN CP Function Block for
Siemens S7-Controls (Step7 V5.5)

SICK

Sensor Intelligence.

Table of contents

I o To UL o g T ST o [1o U L4 1= o | SR 3
1.1 Purpose of this dOCUMENTooiiiiii e e e e e 3
N 1= T (o 1= o | 01U o PSPPSR 3

2 General INTOIMALION 4

S Hardware CONFIQUIAtION ... e e e e e e r e e e e 5
3.1 SUPpPOrted PLC CONLIOIELSuvuiiii e e et s e e e e e e et e e e e e e eeennnes 5
3.2 Supported fieldbus gateWaYS/SENSOIS..........cuviiiiiiiiiiiiiiiiiiiiiieeeeee et 5
3.3 CoNfIQUIation iN STEPT ...cevveeiiiiiiiiiiiiiiiee ittt ettt ettt e e et e e e e e e e e e e eeeeeeeeees 5

3.3.1 Hardware CONfIQUIAtiONcccoiiiiiiiiiii e e e e e et e e e e e e e aaanees 6
3.3.2 ACCESS tO thE 1/Q @I Auuuuuuiiiiiiiiiiiiiiii bbb nnnnnes 6

v/] Lo Tod (o 1= 1Yot fT 01 11 o [PPSR 10
4.1 BIOCK SPECIICALIONS.cceiiieeiiiei et e et r e s e e e e e e e et e e e e e e e e eaaaee 10
4.2 OPErating PHNCIPIE ... e et ee s e e e e e e ettt e s e e e e e e e e arra e e e eeaaeeareees 11
4.3 RESPONSE L0 BITOIS ...uieeeeiieettiiia e e e e et eeeet e e e e e e eeeaeee i a s e e aaeeeesssaaaaeeeeeennnnnaaaaeeaaeeennnes 13
N1 011 o T PP PP PP PPPPPPPPPP 13
I [N T= I (=1] = SRR 14

A5 L IMOUE ... 15
T o Tox |l o] [T o U 16
G BN [17T o1 o Y PP 16
R B e =T Vo i - T PP 17
A5 5 W TBY oo oo oo e 17
I S I (=TT o 01 0 = o o 18
4.5.7 REAAING FESUIL ..ot e e e e e e e e e e e e e e eraa s 18
4.6 Receiving reading results > 200 DYLESoovvviiiiiiiiiiiiiiiiiiiiieeeeeeeeee e 19

O P A AIMBLEIS ...ttt et e e et et ettt e et rb e e erra e aane 21

L =t 0] g oo Lo 1= PSSR 24

T EXAMIPIES e 27
7.1 Reading tag CONTENT........coiiiiiiieieie e 28
7.2 WIItING 1A CONTENT.....uuii e e et e e e e e et e e e e e e e e e e aarbaaaaeaaeas 29

Date: 29.04.2014 2

Function Block SICK

Technical Information

1 About this document

Please read this chapter carefully before you start working with these operating instructions
and the SICK RFH6XX function block.

1.1 Purpose of this document

These operating instructions describe how to use the SICK RFH6XX PN CP function block.
They are intended to guide technical personnel working for the machine manufacturer/operator
through the processes of configuring and commissioning the function block.

1.2 Target group

These operating instructions are aimed at specialist personnel such as technicians and
engineers.

Date of issue: 29.04.2014 3

RFH6XxX PN CP
Technical Information Function Block SICK

2 General information

The "SICK RFH6XX PN CP" function block is used to facilitate communication between
a SIMATIC controller and a SICK RFH6XX RFID interrogator.

The following figure shows how the function block is represented in the function block
diagram (FBD) view.

FE73
BFHEX BRFIL
function block

"SICK RFH&EXX PN CP"
.. = EN
.. —CPDATE IN

CPLATL
.. = 0UT
.. —CAN ID
.. = TOUT
.. —|START_REQ
.. —TRIG_ON
.. —|TRIG_OFF
JRR i
.. —WE_TALG
.. = INWVENTOEY

LOCE_
_ . =—BLOCE

STAY_ FD_DONE|— .
. —{QuUIET

REQ_DONE[-
. =—{COM_TEST
REQ_BUSY[.

FREE_
_ . m COMPLANT ERROR|m .
. —{BESET EREORCODE|— |

—DATA ENO fm

Figure 1: SICK RFH6XX PN CP function block

Block functions:

- Send a trigger command (CoLa' command) via the PLC

- Receive reading results (defined in SOPAS-ET" output format)

- Read and write transponder content

- Execute an inventory command (show all transponders in the read field)
- Permanent blocking of transponder blocks

- Execute a communication test

- Communicate via freely selectable CoLa commands (CoLa-A protocol)
- Address devices that communicate with each other via CAN bus

T.The command language (CoLa) is a protocol internal to SICK for communicating with SOPAS devices.
" SOPAS-ET is an engineering tool for configuring SICK sensors.

Date: 29.04.2014 4

RFH6XxX PN CP
Technical Information Function Block SICK

3 Hardware configuration

3.1 Supported PLC controllers

The function block may only be operated with Simatic S7-300 controllers. Only controllers
that feature the relevant fieldbus interface are supported. Communication via
a communication processor is not supported by this block.

3.2 Supported fieldbus gateways/sensors

The SICK sensor communicates with the controller via a fieldbus (PROFIBUS/PROFINET).
If the sensor does not support the PROFIBUS/PROFINET fieldbuses, gateway modules can
be used.

The following gateways are supported by the function block:

- CDM 425 (PROFINET), firmware version V3.31 or higher

- CDF 600 (PROFIBUS), firmware version V1.15 or higher

- CDM 420 including CMF400 PROFIBUS module, firmware version V1.100 or higher

Required RFH firmware version:
- RFH6xx, firmware version V1.31 or higher

3.3 Configuration in Step7

The RFH must be configured properly in the Step7 hardware configuration before the
function block can be used. In order for this to happen, the corresponding generic station
description (GSD file) must be imported into the Step7 hardware library.

The function block is specially designed for handshake mode (Confirmed Messaging
Protocol). Only use HS modules with lengths of between 8 and 128 bytes. The addresses
used can be configured inside or outside of the I/0O area. Addresses must not be assigned to
I/O areas that have a partial process image and OB6x connection (synchronous interrupts)
assigned to them.

Date: 29.04.2014 5

RFH6XxX PN CP
Technical Information Function Block SlCK

3.3.1 Hardware configuration
Figure 2 shows a sample configuration with a CDM425 PROFINET gateway.

T SIMATIC 300(1) (Configuration) - COLA_PN_CP =]

] j
CPU 315-2PN/DP = 11] COM

MELDR

A0
Poit T
Poit 2

CP 343-1 Advanced
GAT
XTPT Port ¥ -)
o R Ethermet[1]: PROFIMET-10-5ystern [100])

X RN EN
o

X2ATA
X2A2A

Poet T
Porf 2

-
«| | »

:I:l (1] COM425

Slot Module Order number | address [address Diagnostic address: Camment |

&7 LOMLTE TLELEE £E5T -
AT LML Handtviake sl 7 Rt
AT F 7 SEET

INPUT [HS] - 20 bytes 0,19
OUTPUT [H5F 20 bytes 019

OD'HJCDU1-J=-LAJ|I\J|—‘

Figure 2: Step7 hardware configuration

Please note that the 1/0 addresses of the CP module are not identical to the 1/O addresses of
the CPU because the CP module has its own address range. Therefore, direct
communication with the PROFINET station is not possible from the S7 program.

The entire 1/0O area of the CP module (in this case, the SICK CDM425 and Siemens
ET200S stations) is accessed via the FC1ll (PNIO_SEND) and FC12 (PNIO_RECV)
functions. These functions result in a consistent 1/O image of all the devices connected to the
CP module.

In order to utilize the Siemens FCs, the I/O areas of the connected I/O devices must be
configured in a continuous sequence, starting with address 0.

3.3.2 Access to the I/O area

The I/O area of the connected stations should be read or written to during every PLC cycle.
In this example, the FC11/FC12 functions are called cyclically in OB1.

Function FC12 (PNIO_RECV) must be configured as follows:

Date: 29.04.2014 6

Technical Information

CPLADDR:
MODE:
LEN:

RECV:
IOPS:

RFH6XxX PN CP

Function Block

SICK

Hardware address of the configured CP module (see Figure 4)

0 = 10 controller mode

Byte length of all input data starting from address 0

CDM425 (0..19) = 20 bytes
ET200S (20..23) = 4 bytes
Total = 24 bytes

Pointer referencing the data area (DB) where the incoming data is to be stored
Pointer referencing the data area (DB) where the IOPS (10O Producer Status)
is to be stored. The data area for the IOPS data must have a length of LEN/8

(24/8 = 3 bytes).

Netxmrk 2 : RECEIVE DATA

Deceive the whole CP-PN data wia FCl:Z

. —|EN

FC12
FNIO RECEIVE
"PHIO_RECW"

WHlEF1F4 = CPLADDR

Efleg0 —{HODE

Zd e LEN

PEDBZ _DBEX0
Nl
Process
data input

"PNIO_
DATA CP".
FD IN — RECV

IOps

ERROR

SETATUSE

CHECK_

IOps

ADD_INFO

ENO

MDBZ _DBXS
2.0
Ia
produacer
status
PD_0OUT /2
"PNIO_
DATA_CP".
=IO0PS

H50_0O
~"RECY_NDR"

H50_.1
"RECYV_
~Error"

). Lo
"RECW_
—3tatus"

502
"RECT_
e ULER

EE54
"RECV_
nddTnfo"

Figure 3: FC12 (PNIO_RECYV) call in OB1

Date: 29.04.2014

Technical Information

RFH6xx PN CP
Function Block

SICK

Figure 4 shows you where to find the hardware address of the configured CP module in the
Simatic hardware configuration.

= (0] UR
1 -
; ;2?/‘93 F.1 2-2PN/DP Ficon| [Fieetzoos
X2 P
X2P7 Pod 7
22 Port 2
8
i F CP 343-1 Advanced Propetties - CP 343-1 Advanced - (R0;54) il
X1 58T
X107 E Pord T 1 Users | Symbals | DS Parameters FTFP | Dizanostics
a2 i Ao General Addieszes | Options I Time-of-Day Synchranization I IP Access Protection
x2prA [Poni Clrouts
JerzA [Pz a
g - o
Start: [500] Length: 16 [System default
WH1GE1FA
1] |
— Dutput
&0 o
Slat | Maduls | Order number Start: 500 Length: 16 I | Systen default
[|

Figure 4: Hardware address of the configured CP module

Date: 29.04.2014

Technical Information

RFH6XxXx PN CP
Function Block

SICK

Function FC11 (PNIO_SEND) must be configured as follows:

CPLADDR: Hardware address of the configured CP module (see Figure 4)
MODE: 0 =10 controller mode
LEN: Byte length of all output data starting from address 0
CDM425 (0..19) = 20 bytes
ET200S (20..23) = 4 bytes
Total = 24 bytes
SEND: Pointer referencing the data area (DB) used to store the output data that is to
be written
IOCS: Pointer referencing the data area (DB) where the IOCS (10 Consumer Status)

is to be stored. The data area for the IOCS data must have a length of LEN/8
(24/8 = 3 bytes).

Netvork 3 : ZEND DATA

Send the whole CP-FN data wia FC11

FCl11
FMIO ZEND
"PMIO_SEML"

PEDBZ _DBEX4
8.0
I
CORSUmEY
status
o TN /2
"DPNIO_
DATA _CP".
I0OCES | —T0Cs

_ . —EN
WELEHL1F4 == CPLADDER

Efle§0 —{MODE

F ol el LEN

PIDBZ _DBXZ

Date:

4.0
FProcess
data
output
"PNIO_
DATA CP".
D OUT —

LONE

ERROR

STATUS

CHECHK_
I0CS

ENO

HeD_ O
"SEND_
=Drome "

HeD_1
"SEND_
~Error"

W62
"SEND_
—Status"

B0 2
"SEND_
—Tocse

Figure 5: FC11 (PNIO_SEND) call in OB1

29.04.2014

RFH6XxX PN CP
Technical Information Function Block SICK

4 Block description

The function block is an asynchronous FB, i.e., processing encompasses several function
block calls. This means that the block must be called in the user program on a cyclical basis.

The RFH block encapsulates the "SICK CCOM PN CP" (FB14) function block, which
facilitates communication between the PLC and the sensor. FC10 (SICK COLA ACCESS) is
used internally to interpret CoLa telegrams.

4.1 Block specifications

Block number: FB73

Block name: SICK RFH6XX PN CP

Version: 2.1

Blocks called: SFC20 (BLKMOV)
SFB4 (TON)

FB14 (SICK CCOM PN CP)
FC10 (SICK COLA ACCESS)

Data blocks used: DB73 (SICK RFH DATA)

Block call: Cyclical

Flags used: None

Counters used: None

Registers used: AR1, AR2 (for multi-instance calls)
Capable of multi-instancing: Yes

Language used for block creation: Step7 STL

Step7 version: Simatic Step7 V5.5

The system functions (SFCs) used in the function block must exist on the controller that is
being used.

If block numbers are changed, then the corresponding calls in the SICK RFH6XX PN CP
block must be updated accordingly.

Date: 29.04.2014 10

RFH6XxX PN CP
Technical Information Function Block SICK

4.2 Operating principle

The following communication parameters must be specified before the RFH block can
be used:

CPDATA IN: Pointer referencing the input data of the sensor/gateway. The input data first
has to be fetched using function FC12 (PNIO_RECYV).

CPDATA OUT: Pointer referencing the output data of the sensor/gateway. The output data
has to be transmitted to the device using function FC11 (PNIO_SEND).

DATA: The data block (DB73) that accompanies the function block contains input and output
parameters for the supported block functions. The data block must be transferred to the
"DATA" input parameter of the function block.

Executable block functions:

- Trigger on - Uses a CoLa command to open the device reading gate

- Trigger off - Uses a CoLa command to close the device reading gate

- Readtag - Reads out the transponder data

- Write tag - Writes transponder data

- Inventory - The inventory function searches for active transponders in
the RFH reading range and returns their UIDs.

- Lock block - Permanent blocking of a selected transponder block

- Stay quiet - Mutes the RFID tag located in the field.

- Communication test > Checks whether the device can be contacted by sending
command "sRI0"

- Free command - Executes a freely selectable CoLa command

- Reset - Resets communication

To execute a block function (TRIG_ON, RD_TAG, etc.), the desired function must first be
selected. Only one function can be executed at a time. The START_REQ parameter must be
triggered with a rising edge (signal change from logical zero to one) in order for the function
to be executed. Until a valid device response is received, the REQ_ BUSY parameter signals
that a response is still pending.

If the block's REQ_ DONE output parameter = TRUE, it means that the function has been
successfully completed. If data was requested from the device during this function
(e.g., RD_TAG), this data is copied to the relevant data area of the accompanying user data
block (DATA).

Data sent via a trigger command (TRIG_ON, TRIG_OFF) or directly by the device
(e.g., direct trigger via a photoelectric sensor) is stored in the data block
(ReadingResult.arrResult). For one PLC cycle, the RD_DONE output parameter indicates
that new data has been received. The data sent by the device can be changed or adapted in
SOPAS output format.

Date: 29.04.2014 11

RFH6XxX PN CP
Technical Information Function Block SICK

Figure 6: SOPAS output format

Date: 29.04.2014 12

RFH6XxX PN CP
Technical Information Function Block SICK

4.3 Response to errors

If the function block has an incorrect input value or if the input has been connected incorrectly,
an error bit (ERROR) is set and an error code (ERRORCODE) is output. In this case, no further
processing is carried out. The diagnostic parameters (ERROR, ERRORCODE) of the function
block retain their values until a new command is started.

The RESET bit can be used to reset communication between the sensor and PLC. The reset
command is executed as soon as the RESET bit is selected and the START_REQ bit is
triggered with a rising edge (signal change from zero to one). The REQ_BUSY bit signals
that the command is being processed. Once the reset routine is completed, the REQ_DONE
bit is set.

The following functions are executed during a reset routine:

- Reset of Confirmed Messaging Protocol counter (device communication)
- All error messages reset

4.4 Timing
A

START_REQ ﬂ

RD Tag

A 4

A\ 4

REQ_DONE

A 4

REQ_BUSY

v

ERRCOR H

A4

Figure 7: Timing diagram

1: Request triggered by rising edge at START_REQ

The desired function (RD_TAG in this case) must be selected at the same time/in advance.
Only one function may be selected at once; otherwise, the function will be aborted with
"ERROR".

2: Once all commands have been sent and all responses received, the function is terminated
with "REQ_DONE". If an error occurred during the function, the function is terminated with
"ERROR". "ERRORCODE" contains information on the error that occurred if the function is
aborted with "ERROR".

Date: 29.04.2014 13

RFH6XxX PN CP
Technical Information Function Block SICK

4.5 Value transfer

The supplied data block "SICK RFH DATA" (DB73) contains input and output parameters for
all supported block functions. The data block can be renamed according to the user program.
The data structure has a fixed definition and may not be modified except for the last entry
(ReadingResult.arrResult) (see chapter 4.6: Receiving reading results > 200 bytes).

m DB73 -- "SICK RFH DATA" -- SICK_RFHEXX_PNDP'SIMATIC 300(

Type Initial walue
STRUCT
+0.0(|Mode STRUCT —-- MODE --
+0.0 bHMode EOOL FALSE l: Use a fixed UIL | 0: Use the UIlF of the transponder in the field (IN)
+Z.0 arrUID ARRAT[1.. 2] If bMode=1, this TID will ke used for a Read/Write/Locks/Stay cuit jokh (INSOUT)
*1l.0 ETTE
=10.0 END_STRUCT
+10.0| |iLockBlock INT o Humber of the block that should be locked (IN)
+1z.0| |Inventory STRUCT —- INVENTORY --
+0.0 iMumPetTags INT [u} Nunmber of returned transponders (0UT)
+z.0 arrTagInfo ARRBAT[1..E] Max. 5 transponder (0UT)
*0.0 STRUCT
+0.0 nError EYTTE Bglego Error code (0OUT)
+1.0 nRSST EYTE Bglego REET B walue (0UT)
+Z.0 nDEFID ETTE Bfleg0 DSFID (0UT)
+4.0 arrUID ARDAT[1. 8] UIL {(0UT)
*1l.0 ETTE
=lz.0 END_STRUCT
=5z.0 END_STRUCT
+74_0| |ReadTag STRUCT —- READ TAG --
+0.0 iStartBlock INT o Humber of the first block that should be read (IN)
+z2.0 iNumElocks INT o Humber of blocks that should be read (IN)
+4.0 ilatalLength INT a Content length in bytes (0UT)
+s.0 arrData ARRATI[1..128] Data to be read (0OUT)
*1.0 EYTE
=1l34.0 END_STRUCT
+E208.0((WriteTag STRUCT —-- WRITE TiG --
+0.0 iStartBlock INT o Humber of the first block that should be written (IN)
+z2.0 iNumElocks INT o Humber of blocks that should be written (IN)
+4.0 iBlockSize INT 4 EBlock size in bytes (IN)
+&.0 arrData ARRAT[1. .128] Data to be write (IN)
*1l.0 ETTE
=134.0 END_STRUCT
+342.0| |[FreeConmand STRUCT —- FREE COMMAND --
+0.0 iCommandLength [INT a Byte length of the free command (IN)
+Z.0 arrCommard ARRAT[1.._100] Command (SICE Cola-i protocol without [STH]/[ETH] framing) (IN)
*1l.0 CHAR
+10z.0 iResultLength INT [u} Byte length of the free command result (0UT)
+104.0 arrResult ARRAT[1..100] Result (S3ICK CoLi-&4 protocol) (0UT)
*1l.0 CHAR
=Z04.0 END_STRUCT
+546. 0 [ReadingResult STRUCT —- READING RESULT --
+0.0 ntounter ETTE Bflef0 This counter is incremented if a new reading result has arriwed {(0UT)
+z.0 iLength INT [u] Byte length of the reading result (0UT)
+4.0 arrResult ARDAYT[1..Z00] Reading result data (0UT)
*1.0 CHAR
=Z04.0 END_STRUCT
=750.0 END_STRUCT -

Figure 8: Structure of SICK RFH DATA user data DB

Date: 29.04.2014 14

Technical Information

45.1 Mode

RFH6XxXx PN CP
Function Block

SICK

The RFH can only communicate with a single transponder at any one time. For this reason,
read and write commands are always addressed. The function block uses the UID
(unigue identifier) to identify the transponder.

The function block supports two different modes in order to determine which transponder UID
is to be communicated with:

Mode 1: The system always communicates with the transponder which is currently in
the read field. This mode can only be used when precisely one tag is located within

the field.
Mode 2: A user-defined transponder UID is used for the purpose of communication.
Parameter Declaration | Datatype | Description
Mode.bMode Input BOOL Addressing mode
FALSE: Mode 1 active
TRUE: Mode 2 active
Mode.arrUID Input/Output | INT Transponder identifier (UID)
The UID is read out automatically in
Mode 1.

Date: 29.04.2014

Table 1: Mode parameters

15

Technical Information

45.2 Lock block

RFH6XxXx PN CP
Function Block

SICK

The lock block function allows you to protect any block on the RFID tag by preventing it from
being overwritten. The block number is specified via the iLockBlock parameter before
the FB function is executed. The function permanently locks the selected block. The block

cannot be unlocked.

Parameter

Declaration

Data type

Description

iLockBlock

INPUT

INT

Number of the block to be locked

4.5.3 Inventory

The inventory function searches for active transponders within the receiving range of the
sensor. The function block provides the following information for each detected transponder

(max. 5 transponders).

Parameter Declaration | Data type | Description
Inventory. Output INT Number of detected transponders
iNumRetTags
Inventory. Output BYTE Transponder error code
arrTaginfo[].nError (see RFH operating instructions)
Inventory. Output BYTE RSSI (signal strength of detected
arrTaginfo[].nRSSI transponder)
Inventory. Output BYTE DSFID of detected transponders
arrTaginfo[].nDSFID
Inventory. Output ARRAY | UID of detected transponders in
arrTaginfo[J.arrUID [1..8] HEX format

OF BYTE

Date: 29.04.2014

16

RFH6XxX PN CP
Technical Information Function Block SICK

4.5.4 Read tag

The read tag function is used to read a defined data area of a tag. This function can only
ever be applied to one tag. The selected mode determines which transponder the system
communicates with (see chapter 4.5.1).

Prior to each read process, it is necessary to define which blocks are to be read out of the
transponder. Once the read process is successfully completed, the byte length of the read
data is stored in the user data DB along with the user data.

Parameter Declaration | Data type | Description
ReadTag. Input INT Number of block at which the read
iStartBlock process is to start
ReadTag. Input INT Number of blocks to be read
iNumBlocks
ReadTag. Output INT Length of read content in bytes
iDataLength
ReadTag.arrData Output ARRAY Content of read blocks

[1..128]

OF BYTE

Table 2: Read tag parameters

4.5.5 Write tag

The write tag function is used to write to a defined data area of a tag. This function can only
ever be applied to one tag. The selected mode determines which transponder the system
communicates with (see chapter 4.5.1).

Prior to each write process, it is necessary to define the block at which the write process is
to start and how many blocks are to be written. The block length of the transponder must
also be specified, because this changes depending on the tag type (see information from
tag manufacturer).

Parameter Declaration | Data type | Description
WriteTag. Input INT Number of block at which the write
iStartBlock process is to start
WriteTag. Input INT Number of blocks to be written
iNumBlocks
WriteTag. Input INT Block length in bytes
iBlockSize

Valid range:

[4,8,12,16,...]
WriteTag.arrData Input ARRAY | Data to be written to the transponder

[1..128] | blocks
OF BYTE

Table 3: Write tag parameters

Date: 29.04.2014 17

RFH6XxXx PN CP
Function Block

SICK

Technical Information

4.5.6 Free command

The free command allows you to communicate with the RFH via a valid CoLa command.
For this to happen, the command must be stored in the "arrCommand" parameter of the
"FreeCommand" structure. The character length of the command to be transmitted is written
to the "iCommandLength" parameter. The commands can be obtained from the device
description or SOPAS-ET.

Parameter Declaration | Data type | Description
FreeCommand. Input INT Character length of the CoLa
iCommandLength command to be transmitted
Valid range
[1..100]
FreeCommand. Input ARRAY Freely selectable CoLa command
arrCommand [1..100] (for commands, see device
OF CHAR | documentation)
FreeCommand. Output INT Byte length of received ColLa telegram
iResultLength
FreeCommand. Output ARRAY Response to the transmitted ColLa
arrResult [1..100] telegram
OF CHAR

Table 4: Free command parameters

4.5.7 Reading result

The "ReadingResult.arrResult" array stores data that is sent via a trigger command
(TRIG_ON, TRIG_OFF) or directly from the device (e.g., direct trigger via photoelectric
sensor). The RD_DONE output parameter signals whether data has been received.

Parameter Declaration | Datatype | Description
ReadingResult. Output BYTE The receive counter is incremented by
nCounter one as soon as a new reading result
is received.
Value range:
[0x00..0xFF]
ReadingResult. Output INT Byte length of received reading result
iLength
ReadingResult. Output ARRAY Response to a trigger signal (can be
arrResult [1..200] defined via the SOPAS output format)
OF BYTE
The maximum length of the received
data is 200 bytes. Chapter 4.6
describes the procedure for receiving
longer data telegrams.

Table 5: Reading result parameters

Date: 29.04.2014 18

RFH6XxX PN CP
Technical Information Function Block SICK

4.6 Receiving reading results > 200 bytes

The function block is designed to receive reading results up to a length of 200 bytes. If longer
data is to be received, the function block must be changed at the points indicated below.

Changes in SICK RFH DATA data block:
The length of the "ReadingResult.arrResult" array in the user data block supplied (DB73)
must be set so that the reading result to be received fits into the data area of the variable.

+4Z26.0 |ReadingResult STRUCT —- READINCG RESULT --
+0.0 nCounter EYTE Eflcf0 This counter is incremented if a new reading result has arriwed (0UT)
+Z.0 iLength INT o Evte length of the reading result (0UT)
t4.0 arrRasult ARPAT[1..E00] Reading result data (0UT)
*1.0 CHAR
=z04.0 END_STRUCT

Figure 9: Receiving reading results > 200 bytes (change to data block)

Changes in SICK RFH6XX PN CP function block:

In the static area of the variable overview, the length of the "arrRecord" variable must be
adapted so that the reading result fits into the data area of the variable. The array is not
allowed to be less than 500 bytes in length, but must be greater than or equal to the length of
"ReadingResult.arrResult".

Contents 0f: "EnvironmenthInterface3S5TAT"
E--@ Interface |Name Data Type |Address Initial Value
- I ‘@l iReqlength |Int zz.0 o
---1} oUT = arrCommand [Rrray [1..500] Of Byvte 24.0
& o ' srenecors [z (1o sosl of yee] s2¢.0
--Ji' STAT feCCOM SICE COM TICP 10z24.0
- TEME £bTON TON 1153_0

Figure 10: Receiving reading results > 200 bytes (change to function block declaration)

The newly defined array lengths must be entered into network 3 of the SICK RFH6XX PN CP
function block.

Date: 29.04.2014 19

RFH6XxX PN CP

Technical Information Function Block

= w : CONFIGURATION

- Configure the length of the "Record"™ array

— Configure the length of the "Command™ array

— Configure the length of the "Reading Besult™ array
— Configure [S5TX]/[ETX] framing flag

PLEASE NOTE:
"Record"™ array = "Commzsnd" array
"Record™ array = "Heading Result" array

//—— LENGIH OF THE RECCRD RRRRY
:
T gikrrayReclen

f/—— LENETH OF THE COMMAND RARRAY
L 500
T gidrrayComlen

S /—— LENGTH OF THE EEADING RESULT ARBAY

L
T flArrayBeadlen

//—— FRRMING
CLR S/ Set telegram framing
= #b2ddFraming

//—— RESET REARDING RESULT FLAG
CLR
= §RD DONE

SICK

Figure 11: Receiving reading results > 200 bytes (change to block code)

After modification, the instance of the function block must be updated. Subsequently,
the modified user data block and the function block must be transferred to the PLC again,
together with the updated instance.

Date: 29.04.2014

20

RFH6XxX PN CP
Technical Information Function Block SICK

5 Parameters

Parameter Decla- |Data Memory Description
ration type area
EN INPUT | BOOL I,LM,D,L, Enable input (LD and FBD)
const.
CPDATA_IN |INPUT |ANY D Pointer referencing the input area of

the sensor/gateway. Only the BYTE
data type is permitted.

Note:

Please be aware that the DB parameter
data always has to be specified in its
entirety for the parameter

(e.g.: P#DB13.DBX0.0 BYTE 100).

An explicit DB number cannot be omitted;
otherwise a block error will occur.
CPDATA _ INPUT |ANY D Pointer referencing the output area of
ouT the sensor/gateway. Only the BYTE
data type is permitted.

Note:

Please be aware that the DB parameter
data always has to be specified in its
entirety for the parameter

(e.g.: P#DB13.DBX0.0 BYTE 100).

An explicit DB number cannot be omitted;
otherwise a block error will occur.
CAN_ID INPUT | INT I,M,D,L, CAN ID of the sensor to be addressed
const.

If no CAN network is used, the CAN ID
is 0.

The master or multiplexer is always
addressed with CAN ID 0, even if it has
been assigned another CAN ID.

TOUT INPUT TIME I,M,D,L, Period of time, after which a timeout
const. error is triggered

START_REQ |INPUT |BOOL I,M,D,L Rising edge:

Selected block function is executed

TRIG_ON INPUT BOOL I,M,D,L, Block function: Execute a device trigger
const. (open trigger window).

TRIG_OFF INPUT |BOOL I,M,D,L, Block function: Execute a device trigger
const. (close trigger window).

The result sent from the device
(SOPAS output format) is stored in the
"ReadingResult.arrResult" variable of
the user data DB (DB73).

Date: 29.04.2014 21

Technical Information

Function Block SICK

Parameter

Decla-
ration

Data
type

Memory
area

Description

RD_TAG

INPUT

BOOL

I,M,D,L,
const.

Block function: Read tag content.

This function only works if the parameters
of the "ReadTag" structure for the
transferred data block have been
assigned valid values (see chapter 4.5.4).

The selected addressing mode
determines which transponder is to be
read (see chapter 4.5.1).

WR_TAG

INPUT

BOOL

I,M,D,L,
const.

Block function: Write tag content.

This function only works if the parameters
of the "WriteTag" structure for the
transferred data block have been
assigned valid values (see chapter 4.5.5).

The selected addressing mode
determines which transponder is to be
written to (see chapter 4.5.1).

INVENTORY

INPUT

BOOL

I,M,D,L,
const.

Searches for active transponders within
the receiving range and indicates their
UID, DSFID, and RSSI signal strengths

LOCK_
BLOCK

INPUT

BOOL

ILM,D,L,
const.

Protects a defined block by locking it so
that it cannot be overwritten

This function only works if a valid block
has been assigned to the iLockBlock
parameter in the data block being
transferred (see chapter 4.5.5).

The function permanently locks the
selected block. The block cannot be
unlocked.

STAY_QUIET

INPUT

BOOL

LM,D,L,
const.

Mutes the RFID tag located in the field

This function can only be used if the HF
field of the RFID device is permanently
switched on (see SOPAS >
Transponder Communication -

HF Field).

COM_TEST

INPUT

BOOL

ILM,D,L,
const.

Block function: Execute a communication
test.

REQ_DONE = TRUE:
Communication OK

REQ_DONE = FALSE:
Communication not OK

Date: 29.04.2014

22

Technical Information

RFH6XxXx PN CP
Function Block

SICK

Parameter

Decla-
ration

Data
type

Memory
area

Description

FREE_
COMMAND

INPUT

BOOL

I,M,D,L,
const.

Block function: Execute a free command.

This function only works if valid data
has been assigned to the
iCommandLength and arrCommand
parameters in the structure
(FreeCommand) within the user data
block (DB73) (see chapter 4.5.6).

Following successful transfer,

the command response (REQ_DONE =
TRUE) is made available in the RESULT
area of the data block.

RESET

INPUT

BOOL

I,M,D,L,
const.

Block function: Reset communication
with device.

DATA

INPUT

BLOCK_

DB

Const.

Transfers the accompanying user data
block that is required to configure the
block functions and store the reading
results (DB73)

RD_DONE

OUTPUT

BOOL

QM,D,L

Rising edge:
New reading result received

REQ_DONE

OUTPUT

BOOL

QM,D,L

Indicates whether the selected
block function has been successfully
completed

TRUE: Successfully completed
FALSE: Not completed

REQ BUSY

OUTPUT

BOOL

QM.,D,L

Command in progress

ERROR

OUTPUT

BOOL

QM,D,L

Error bit:

0: No error
1: Aborted with error

ERROR
CODE

OUTPUT

WORD

QM,D,L

Error status (see "Error codes")

ENO

OUTPUT

BOOL

QM.,D,L

Enable output (LD and FBD)

Date: 29.04.2014

Table 6: Block parameters

23

Technical Information

RFH6XxXx PN CP
Function Block

6 Error codes

The ERRORCODE parameter contains the following error information:

SICK

Error code | Brief description Description
W#16#0000 | No error No error
W#16#0001 | Timeout error Command could not be executed within the
selected timeout period
Possible causes:
- Device is not connected to the PLC
- Incorrect communication parameters
- CAN bus station not present
W#16#0002 | Internal block error Internal block error
W#16#0003 | No block function Only one block function can be executed at
selected, or more than atime.
one block function
selected
W#16#0004 | Received The reading result received is longer than
reading result > reading 200 bytes. See chapter 4.6 for information on how
result array to receive longer reading results.
W#16#0005 | 100 < FreeCommand. Length of free command is invalid
iCommandLength <=0
Valid range:
[1...100]
W#16#0006 | Free command response | The response to the free command sent is longer
> 100 bytes than 100 bytes.
W#16#0007 | 63<CAN_ID <0 Invalid CAN ID
Valid range:
[0..63]
W#16#0008 | Reserved Reserved
W#16#0009 | Communication error Communication could not be established with
the device.
Possible causes:
- Length of I/0 data is invalid
- A telegram > arrRecord was received.
WH#16#XX0A | Device error A device error occurred ("sFA XX").

XX = device error (see device documentation)

Date: 29.04.2014

24

Technical Information

RFH6XxXx PN CP
Function Block

SICK

Error code | Brief description Description
W#16#000B | Invalid command The selected function was not executed.
response
The following causes are possible, depending on
the function:
- Incorrect trigger setting in the SOPAS device
configuration
- Device is not in "Run mode"
- Tag not long enough in field
- Attempt to access a non-existent tag area
(check iStartBlock and iNumBlocks parameters)
- Invalid UID (check Mode.arrUID)
W#16#000C | Reserved Reserved
W#16#000F
W#16#0010 | Tags infield >5 Inventory cannot be executed because there
(Inventory) are more than 5 transponders in the read field of
the RFH.
W#16#0011 | ReadTag.iStartBlock <0 | Invalid start of reading (read tag)
W#16#0012 | 32 < ReadTag. A maximum of 128 bytes of transponder data can
iNumBlocks <=0 be read per function call (32 blocks of 4 bytes).
Valid range:
[1..32]
W#16#0013 | Content to be read > 128 | A maximum of 128 bytes of data can be read per
bytes function call.
The RD_TAG function must be executed several
times in succession in order to read more than
128 bytes of data.
W#16#0014 | WriteTag.iStartBlock <0 Invalid parameter.
Valid range:
[0 .. max. number of transponder blocks]
W#16#0015 | 32 < WriteTag. A maximum of 128 bytes of transponder data can
iNumBlocks <=0 be written per function call (32 blocks of 4 bytes).
Valid range:
[1..32]
W#16#0016 | WriteTag.iBlockSize <> Invalid block size
4,8,12,16,...
Valid range:
[4,8,12,16,...]
W#16#0017 | Content to be written > A maximum of 128 bytes of data can be written

128 bytes

per function call.

The WR_TAG function must be executed several
times in succession in order to write more than
128 bytes of data.

Date: 29.04.2014

25

Technical Information

Function Block SICK

Error code

Brief description

Description

W#16#0018

iLockBlock < 0

Invalid iLockBlock parameter

Valid range:
[0 .. max. number of transponder blocks]

W#16#XX19

Transponder error

A transponder error has come up.
XX = Transponder- / Device errors

Transponder errors:

16#00: No error

16#01: Command not supported
16#02: Command nor recognized
16#03: Option not supported
16#0F: Unknown error

16#10: Block not available
16#11: Block already locked
16#13: Block write error

16#14: Block lock error

Device errors:

16#1E: Unknown error

16#1F:. CRC error

16#20: Parity error

16#21: Timeout error

16#22: No response error
16#23: Collision error

16#24: Content check error
16#25: Framing error

16#26: Verify error

16#27: Transmit error

16#28: Receive error

16#29: Non addressed error
16#2A: Tag type selection error
16#2B: Max block count error
16#2C: Block length mismatch error
16#46: Slot detect warning

For further error codes please have a look at the
device description.

W#16#001A

No tag in field

There are no tags in the receiving range of the
RFH.

W#16#001B

More than one tag in field

There is more than one tag in the receiving range
of the RFH. This error can only occur in Mode 1.

Table 7: Error codes

Date: 29.04.2014

26

Technical Information

7 Examples

RFH6XxXx PN CP
Function Block

SICK

Figure 12 shows an example of a connected SICK RFH6XX function block. A SICK device
with a process data width of 20 bytes input/output has been set up in the hardware
configuration. The I/O area of the device is written to/read using functions FC11/FC12
(see chapter 3.3). As the sensor's CAN communication is not being used, a zero is entered

for the CAN ID.

Program call:

Netwwork 4 : AUFRUF EFH FE | CALL RFH FE

Aufruf des BFH Funktionshausteins (Profinet-iAnbindung dber CP-Modul)

Call of the PFH function block (Profinet-Connection wia CP-Module)

CALL "SICKE RFH&X IN CPM" | "INSTANCE_FE73" FE73
CPDATA TN :="FPNIO_DATA CP"_ FD_IN FPEDEZ
CPDATA OUT -="PNIO_DATA CP".PD_OUT PHLEZ
CAN ID t="iCanID" MiTle
T0UT =T#E5E
START_REQ ="bReqgquest" MlO.0
TRIG_ON 1="bTriggerin" Mlz.1
TRIG_OFF ="bTrigger0£L" Mlz. 2
LD TAG ="bRdTag" Mlz. 3
WE_TAL ="bBWrTag" Mlz. &
INVENTORY ="bInventory" Mlz. 7
LOCE_ELOCE ="bLockElock" Mlz. 0
STAY QUIET ="bEtayQuiet" Ml3.1
COM_TEST ="bComTest" Mlz. 4
FREE COMMAND:="bFreeCommand" Mlz. &
REZET ="bRe=zet" Mlz.0
DATA ="SICK RFH DATA" LE7Z
FD_DONE ="bRdDone" MlO.1
REQ_DONE ="bReghone" MlO. 2
REQ_BUST ="bRegBusy" MlO. 2
ERROR ="kError" MlO. 4
ERRORCODE ="nErrorcode" MIT14

Figure 12: Example of a connected SICK RFH6XX PN CP function block

S DE17:
_DEXEO_O
JDEHED.OQ

Figure 13: Step7 hardware configuration

Date: 29.04.2014

td odule Order number | address O address Diagnostic address:
[arl L TSELEE Erd
LML Handihaka sl] SRR
Faw ST
INPUT [H5] - 20 bytes qu...w
OUTPUT [HS])- 20 bytes 0,19

27

RFH6XxX PN CP
Technical Information Function Block SICK

7.1 Reading tag content

First, it is necessary to determine which transponder the system is to communicate with. If bit
Mode.bMode = FALSE, then the system will communicate with the transponder that is
currently located in the RFID sensor's reading range.

i Mode

{DBT3DEX 0.0 "SICK RFH DATA" Made bhode ‘BooL Ii false |

Figure 14: Selection of communication mode

Then, it is necessary to define what content is to be read out of the transponder.

Start block: 0

Number of blocks: 2 (humber of blocks to read)
N ========== Read Tag s=========
DBE73.DEVW ¥4 ("SICK RFH DATA" ReadTagiStartBlock DEC 0
DE73IDEVY 76 ("SICK RFH DATA" ResdTag.iMumBlocks : DEC 2

Figure 15: Read tag parameters

The reading function (bRdTag) is executed as soon as the "bRequest" bit is triggered with
a rising edge.

NSICH RFHER X PMDP Function Block Example

WA 16 “iCaniD" DEC
Mo 100 "bReguest" BOCOL
Moo102 "bReyDone" BOCOL
Mo103 "bReyBuUEy" BOCOL
Moo10.4 "BError" BOCOL
mA 14 "mErrarcoce” HEX

! Selection of the FB action to be executed

M2 "BTriggerCn” BOOL
Moo122 "B TriggerCrff" BOOL
Mo123 "bRdTag" BOOL
Moo125 " Tag" BOOL
Moo127 "blrrventary” BOOL
Mo 130 "bLockBlock" BOOL
Mo131 "B StaryCuit" BOOL
Moo12.4 "biZomTest" BOOL
o126 "bFreeCommand” BoOoL
Mo120 "bReset" BOOL -false

Figure 16: Starting the block function

Date: 29.04.2014 28

Technical Information

RFH6XxXx PN CP
Function Block

SICK

The reading function is completed as soon as bit bReqDone = TRUE. The read tag content is
available in the "ReadTag.arrData" array of the user data block. The "ReadTag.iDataLength"
variable specifies how many bytes have been received and are valid.

it Feand Tag

DE7S.DEWY 74 "SICK RFH DATA" ReadTag.iStartBlock (DEC 0
DE7S.DEWY 76 "SICK RFH DATA" ReadTag.MumBlocks (DEC 2
DE7S.DEWY 75 "SICK RFH DATA" ReadTag.Datalength (DEC g
DEYS.DBE 80 "SICK RFHDATA" ReadTag.arData(1] (CHARACTER =5
DEYS.DBE &1 "SICK RFHDATA" ReadTag.arData(2] (CHARACTER T
DEYS.DBE &2 "SICK RFHDATA" ReadTag.arrData(3] (CHARACTER !
DEYS.DBE 83 "SICK RFHDATA" ReadTag.arrData(4] (CHARACTER LS
DEYS.DBE &4 "SICK RFHDATA" ReadTag.arrData(s] (CHARACTER B
DEYS.DBE 85 "SICH RFHDATA" ReadTag.srrDats(6] (CHARACTER A
CEYS.DBE 86 "SICH RFHDATA" ReadTag.srrDats(7] (CHARACTER Res
CEYS.DBE &7 "SICH RFHDATA" ReadTag.srrDats(3] CHARACTER '
DEYS.DBE 88 "SICH RFHDATA" ReadTag.srrDats(9] (CHARACTER B#16#00
CEYS.DBE 89 "SICH RFH DATA" ReadTag.srrDats(10] (CHARACTER B#16#00

Figure 17: Read tag content

7.2 Writing tag content

First, it is necessary to determine which transponder the system is to communicate with. If bit
Mode.bMode = TRUE, then the system will communicate with the specified transponder,
the UID of which must be known in advance (in this case: EO 04 01 00 06 D2 37 45).

it Mode

DE73DEX 0.0 "SICK RFH DATA" Mode bidode BCOL true
DE7VIDEE 2 "SICK RFH DATA" Mode arrUIC[1] HEX B#1 BRED
DEVIDEE 3 "SICK RFH DATA" Mode arrUID[2] HEX Bt 6404
DE7IDEE 4 "SICK RFH DATA" Mode arrUID[S] HEX Ba1 6401
DETIDEE 5 "SICK RFH DATA" Mode arrUID[] HEX B 6400
DEVIDEE & | "SICK RFHDATA" Mode arrUIC[S] HEX B#1ER0E
DE7VIDEE 7 "SICK RFH DATA" Mode arrUIC[E] HEX B#1 6402
DE7VIDBEBE & ["SICK RFH DATA" Mode arrUID[7] HEX B#1E#37
DE7TIDEE 9 "SICK RFH DATA" Mode arrUID[S] HEX B E45

F

igure 18: Specification of transponder UID

Then, it is necessary to define what content is to be written to the tag and where it should

be stored.

Date: 29.04.2014

29

RFH6XxX PN CP
Technical Information Function Block SICK

Start block: 0

Number of blocks: 3 (number of blocks to write)

Block size: 4 (transponder-dependent)

Data: "Hello World"
if ==========ite Tay ==========
DE73.DEVY 205 "SICK RFH DATA" WriteTag iStartBlock :DEC
DE7I.DEVY 210 "SICK RFH DATA" WriteTag.iMumBlocks :DEC 3
DE7IDEWY 212 "SICK RFH DATA" WriteTag iBlockSize :DEC 3
DE730BEBE 214 "SICK RFHDATA"WriteTag arrData1] (CHARACTER 'H
DE73IDBEBE 215 "SICK RFH DATA"WriteTag arrData[2] (CHARACTER ‘et

DE7VIDEB 216 :"SICK RFH DATA" WriteTan.arrData(3] : CHARACTER T
DE7VIDEE 217 "SICK RFH DATA" WriteTag.arrData(4] :CHARACTER T

DEVIDEB 218 ["SICK RFH DATA" WriteTag.arrData(s] (CHARACTER o'
DBEVIDEE 219 "SICK RFH DATA" WriteTag.arrDatals] : CHARACTER t
DBEVIDBEE 220 ("SICK RFHDATA"WriteTag.arrData[7] (CHARACTER L
DBEVIDEE 221 "SICK RFH DATA"WriteTag.arrData(d] CHARACTER o'
DBEVIDEE 222 "SICK RFHDATA"WriteTag.arrData[9] (CHARACTER I8
DBE7VIDEB 223 "SICK RFH DATA" WriteTag.arrDeta(10] : CHARACTER T
DE7VIDEB 224 "SICK RFH DATA" WriteTag.arrData(11] : CHARACTER '

DE73DBEBE 225 "SICK RFHDATA"WriteTag arrData(12] (CHARACTER .
Figure 19: Write tag parameters

The write function (bWrTag) is executed as soon as the "bRequest" bit is triggered with
a rising edge.

N SICH RFHEX Y PRDP Function Block Example

W 16 "iCaniD" DEC
Mo 100 "bReguest" BOCOL
Moo102 "bRegDone" BOCOL
Mo 103 "bRegBusy" BOCOL
Moo104 "BError” BOCOL
my 14 "nErrarcocde” HEX

I Selection of the FB action to be executed

Mo121 "bTriggerCn” BOOL
Moo122 "bTrigger Off" BOOL
Mo123 "bRdTag" BOOL
Moo125 "l Tag" BOOL
Mo127 "hirrventary™ BOOL
Mo 130 "bLockBlock" BOCOL
Mo 134 "hStay Q" BOCOL
Moo124 "biComTest" BOCOL
Mo 126 "bFreeCammand” BOoL
Mo120 "bReszet" BOCOL

Figure 20: Starting the block function

The write function is completed as soon as bit bRegDone = TRUE.

Date: 29.04.2014 30

	1 About this document
	1.1 Purpose of this document
	1.2 Target group

	2 General information
	3 Hardware configuration
	3.1 Supported PLC controllers
	3.2 Supported fieldbus gateways/sensors
	3.3 Configuration in Step7
	3.3.1 Hardware configuration
	3.3.2 Access to the I/O area

	4 Block description
	4.1 Block specifications
	4.2 Operating principle
	4.3 Response to errors
	4.4 Timing
	4.5 Value transfer
	4.5.1 Mode
	4.5.2 Lock block
	4.5.3 Inventory
	4.5.4 Read tag
	4.5.5 Write tag
	4.5.6 Free command
	4.5.7 Reading result

	4.6 Receiving reading results > 200 bytes

	5 Parameters
	6 Error codes
	7 Examples
	7.1 Reading tag content
	7.2 Writing tag content

