Technical Information

SICK
ColLa Communication Block

CCOM_TCP_CP Function Block for
Siemens S7 Controllers

Date of issue: March 15, 2012 SICK

Sensor Intelligence.

Table of contents

1 About this dOCUMENt..........oo e e 3
1.1 Purpose of this dOCUMENTcooiiiii e 3
1.2 TArgET GIOUD ...t 3

2 General iNfOrmation ... ————————— 4

3 Hardware configuration ... 5
3.1 Supported PLC CONMIOIIErSccoeeeeeeeeeeeeeeeeeeeee e 5
3.2 Configuration iN STEPTeoeiiiiii e 5

L2 38 =3 FeTed [qe L= o7 4 o { T o T 9
g =Y [o Yo QT o =Yoo= o] SRR 9
v @ o T=T = 1 (1 aTo [o 4T o7 o] L= PR 10

4.2.1 Receiving reading results (RD)cccooiiiiiiiiiiiii et 10
4.2.2 Device communication via CoLa commands (REQ)ccooovviiiiiiiiiiiniiiiniinnn. 10
B.2.3 TIMING oo e 11

4.3 RESPONSE 0 BITOISiiiieiiiiiee e et e et e e e e e e e ettt a e e e e e e e e e ettt e e e e eeeeeeeessaaeeaaaeeeennes 11
=T = 0 1= =T 12
R o] oo T L= TSRS 14

£ = €= 1 1] [P 15

ColLa TCP Function Block for CP Modules 1 About this document

1 About this document

Please read this chapter carefully before you begin working with these operating instructions
and the SICK CoLa communication block.

1.1 Purpose of this document

These operating instructions describe how to use the SICK CCOM_TCP_CP function block.
They are intended to guide technical personnel working for the machine manufacturer/operator
through the processes of configuring and commissioning the function block.

1.2 Target group

These operating instructions are aimed at specialist personnel such as technicians and
engineers.

ColLa TCP Function Block for CP Modules 2 General information

2 General information

The CCOM_TCP_CP function block facilitates data exchange between SICK devices and
S7 controllers. The block supports a TCP connection via a Simatic CP module (communication
processor). Controllers with an integrated Ethernet interface are not supported.

This block can be used to operate the following SICK sensors:
- CLV6xx

- LECTOR62x

- RFH62x

- RFUB3x

The following figure shows how the function block is represented
in the function block diagram (FBD) view.

FE11
SICK CoLa FE for
TCP communication
with CP-Moduls
"CCcoMm_TCP_CP"
_DONEf—__ .
.. = EN
ID COUNT|—_ ..
R
FD_LEN|— .
. = LADDER
REQ_DONE[— .
.. = TOUT
REQ_BUSY |~ __
_ . ={3TART_REQ
REQ_LEN|— .
COMMAND
.. = LEN REQ_ERROR|— .
. . = COMMANL LEQ_
ERRORCODE [— |
_ . = RECOERD
RED_ERROR|— .
RD_
ERRORCODE [.
ENO |-

Figure 1: Representation of function block in FBD view

Optional functions:

- Send ColLa' commands to a SICK sensor

- Receive ColLa responses from a SICK sensor

- Receive telegrams sent by devices (can be configured in SOPAS? output format)

! The command language (Cola) is a protocol internal to SICK for communicating with SOPAS devices.
SOPAS-ET is an engineering tool for configuring SICK sensors.

ColLa TCP Function Block for CP Modules 3 Hardware configuration

3 Hardware configuration

3.1 Supported PLC controllers

The function block may only be operated with Simatic S7-300 and S7-400 controllers.
Only controllers that use a CP module for TCP communication are supported. Controllers
with an integrated Ethernet interface are not supported.

3.2 Configuration in Step7

A TPC connection to the sensor must be established before the function block can be used.
To do this, open the NetPro connection tool in the Simatic Manager (Simatic Manager >
Options > Configure network).

BENetPro - [COLA_TCP_CP {Network) -
%gNetwork Edit Insert PLC ‘iew Ophions Swindow Help

|(ZE & & e B O

Ethermet(1}
Industrial Ethernet

MPI(1) I I
MPI
|

|SIMATIC 300(1)

CPU MPWVOP(PH-ID[CP PN-IO
5T L . 31
PH/DP Lean |
] =] i
2

Figure 2: NetPro (Step7)

B !

ColLa TCP Function Block for CP Modules 3 Hardware configuration

Select the CPU in your S7 station and use "Insert > New Connection" to create a new
unspecified TCP connection.

Insert Mew Connection il

— Connection Partner

=1-18] In the current project

- -8 COLA_TCP_CP

i [Unzpecified)

- &l broadcast stations
- Al multicast stations
% 11 unknomwn project

£
Project: I $
Station; |[Unspecified]
I odule; |
— Connection
Type: TLCP connection

¥ | Display properties before inserting

QK I Apply | Cancel | Help |

Figure 3: Creating a TCP connection in NetPro (Step7)

The "Active connection establishment" checkbox must be activated on the "General
Information" tab in the properties dialog box of the TCP connection. The connection
parameters for the TCP connection are displayed on the right-hand side of the dialog box.
These parameter values must be transferred to the CCOM_TCP_CP function block when
the block is called (parameters: ID/LADDR).

x
General Information | Addiesses I Elptinnsl Overview I Status [nfarmation I
r— Local Endpaint — Block Parameters
1D [hex]): 0001 A050
MHame: ITCF'-Verbindung-1
‘ia CF: |I:F' 3431 Lean, PN-10 (R0/54)

Route...

I|7 Active connection establishment I

[Uze FTF protocal

Cancel | Help |

Figure 4: NetPro TCP connection settings (Step7)

ColLa TCP Function Block for CP Modules 3 Hardware configuration

The IP address and port used for the SICK sensor must be specified on the "Addresses" tab.
By default, SICK sensors use port 2112 for communication.

x
General Information Addresses | Dptionsl Owerview I Status Information |
Parts from 1025 through 65535 are available.
[For further ports, refer ta online help]
Local Remote
1P [dec): |1 92168.10.50 |1 921681013
FORT [dec): | 2000 2112

Figure 5: TCP connection addresses (Step7)

Set the "Send/Recv" mode on the "Options" tab.

Properties - TCP connection il
General Information I Addiesses Elptic-nsl Dvewiewl Status Infarmation |
Local
M ade: I Send/Recv j
Corcel | Hep |

Figure 6: Operating mode of the TCP connection (Step7)

After you close the properties dialog box by clicking "OK", a TCP connection is displayed
automatically in the connection table. Save and compile the station and then load the
connection to your S7 controller. It may be necessary to restart the sensor in order to
establish the TCP connection.

ColLa TCP Function Block for CP Modules

3 Hardware configuration

For the purpose of diagnosing the configured TCP connection, you can view the connection

status under "Target system > Activate connection status".

B netpro - [COLA_TCP_CP (Connection status) - 10| x|
B pebwork Edit Insert PLC Miew Options ‘Window Help 18| x|
FEEEEER TS

TSI, 1] 1 =]

[ncustrial Ethernet

WP x I
WP

SIMATIC 300013
MFIAOP PH-10 | CF 1GBIT: PH-10
H A:I\r-anc H E
=] Ho |
2
-

1| | 3
Connection status | Local ID Partner ||Partner Type Active connection partner [Subnet ﬂ
= establizhed onoq A0s0 TCP connection? 1 TCP connection Yes Ethernet(1] [IE]

J Ready

[TCP{IP{Autn) - = D-Link DUB-E100 USE 2.... |

Figure 7: Connection status of the TCP connection (Step7)

P

ColLa TCP Function Block for CP Modules 4 Block description

4 Block description

The CCOM_TCP_CP (FB11) function block makes it easier to use SICK sensors with
S7 controllers. The block enables you to send and receive CoLa commands via a TCP
connection that has been configured in NetPro.

The block can be used for the following tasks:

- Send CoLa commands to a SICK sensor

- Receive ColLa responses from a SICK sensor

- Receive telegrams sent by devices (can be configured in SOPAS output format)

The function block is an asynchronous FB, i.e., processing encompasses several function
block calls. Therefore, the function block must be called cyclically in the user program.

The CCOM_TCP_CP block (FB11) encapsulates Siemens function block AG_ RECV_TCP_xVar

(FB103) as well as the AG_SEND (FC5)/AG_RECV (FC6) functions, which are used for
communication between the PLC and sensor.

4.1 Block specifications

Block number: FB11

Block name: CCOM_TCP_CP
Version: 1.0

Blocks called: FC5 (AG_SEND)

FC6 (AG_RECV)
FB103 (AG_RECV_TCP_xVAR)

SFB4 (TON)
Data blocks used: -
Block call: Cyclical
Flags used: None
Counters used: None
Registers used: AR1, AR2 (for multi-instances)

Language used for block creation: Step7 STL

Blocks FC5, FC6, and FB103 are provided by the Siemens library.

ColLa TCP Function Block for CP Modules 4 Block description

4.2 Operating principle
The following parameters must be specified before the CCOM_TCP_CP block can be used.

ID: Connection ID of the TCP connection. This parameter is specified in the NetPro
connection properties (see Figure 4).

LADDR: Module start address. The module start address is specified in the configuration
table when configuring the CP module with the Step7 hardware configuration. The parameter
is also displayed in the NetPro connection properties (see Figure 4).

COMMAND: The pointer references the data area in which the CoLa command is stored.
The data area must be created by the programmer (e.g., data block with an array of CHAR).

COMMAND _LEN: Character length of the CoLa command to be transmitted

RECORD: The pointer references the data area in which the telegrams sent by the device
are stored. The data area must be created by the programmer (e.g., data block with an array
of BYTE).

4.2.1 Receiving reading results (RD)

Data sent by the device (RD) is written to the record as soon as the function block receives
new data. For one PLC cycle, the RD_DONE bit indicates that new data has been received.
The RD_COUNT counter is incremented as soon as new data has been received.
The RD_LEN parameter indicates the byte length of the telegram last received.

4.2.2 Device communication via CoLa commands (REQ)

When communication takes place via CoLa commands, the command defined in COMMAND
is transmitted to the device. The resulting response is stored in the area defined by
the RECORD pointer. CoLa commands are always sent with control characters ([ETX],
[STX] framing).

To start transmission, you must trigger the START_REQ parameter with a rising edge.
Until a valid response is received in reply to the CoLa command sent, the REQ_BUSY
parameter signals that a response is still pending. If no response is received within the
timeout period (TOUT), the function is terminated with a timeout error (REQ_ERRORCODE).
The REQ_DONE output parameter indicates that a response to a CoLa command has been
received (REQ_DONE = TRUE).

10

ColLa TCP Function Block for CP Modules 4 Block description

4.2.3 Timing
4

START REQ ﬂ

REQ_DONE

v

Y

REQ_BUSY

A

REQ_ERROR

-+
[]
[]
[]
[]
[]
™

\

Figure 8: Timing diagram

1: Request triggered by rising edge at START_REQ. The CoLa command referenced by the
COMMAND parameter is sent to the sensor. Only one command can be sent at a time.

2: Once the command has been sent and the response received, the function is terminated
with "REQ_DONE". If an error occurred during the function, the function is terminated with
"REQ_ERROR". "REQ_ERRORCODE" contains the error code that occurred if the function
is aborted with "REQ_ERROR".

4.3 Response to errors

The REQ_ERROR or RD_ERROR bits signal that an error has occurred. In this case,
an error code is output via the REQ_ERRORCODE or RD_ERRORCODE parameters.
The REQ_ERROR bit remains set untii a new command is started. The RD_ERROR
parameter is only ever active for one PLC cycle and is then reset unless the error remains.

11

ColLa TCP Function Block for CP Modules

4 Block description

4.4 Parameters

Parameter Decla- Data Memory Description
ration type area
EN INPUT BOOL |[I,M,D,L, Enable input (LD and FBD)
const.
ID INPUT INT I,M,D,L, Connection ID for the configured TCP
const. connection (see NetPro connection
settings Figure 4)
LADDR INPUT WORD |[I,M,D,L, Module start address of the configured
const. CP module (see NetPro connection
settings Figure 4)
TOUT INPUT TIME I,M,D,L, Period of time, after which a timeout
const. error is triggered
If this parameter is not connected,
the timeout period is set to 5 seconds
by default.
Please note that some Cola
commands require longer processing
periods (e.g., save commands).
START_REQ |INPUT BOOL |[I,M,D,L Rising edge: System sends ColLa
command and waits for corresponding
response
COMMAND INPUT ANY D Pointer referencing the area containing
the CoLa command to be sent. Only the
BYTE data type is permitted.
Note:
Please be aware that the DB parameter
data always has to be specified in its
entirety for the parameter
(e.g.: P#DB13.DBX0.0 BYTE 100).
An explicit DB number cannot be omitted,;
otherwise a block error will occur.
COMMAND_ |INPUT INT I,M,D,L, Number of bytes in the CoLa command
LEN const. to be sent, which is referenced by the
#COMMAND pointer
RECORD INPUT ANY D Pointer referencing the area in which

the telegrams sent by the device are
stored. Only the BYTE data type is
permitted.

Note:

Please be aware that the DB parameter
data always has to be specified in its
entirety for the parameter

(e.g.: P#DB13.DBX0.0 BYTE 100).

An explicit DB number cannot be omitted;
otherwise a block error will occur.

12

ColLa TCP Function Block for CP Modules

4 Block description

Parameter Decla- Data Memory Description
ration type area
RD DONE OUTPUT |BOOL |Q,M,D,L Rising edge: A reading result sent
by the device has been received
(for formatting details, see SOPAS
output format).
Whenever a reading result is received,
the bit is set for one PLC cycle.
The reading result is available in
the memory area referenced by
the #RECORD parameter.
RD _COUNT |OUTPUT |BYTE |Q,M,D,L Counts the number of reading results
received. The counter goes from 0 to
255 (decimal). The counter restarts at
0 once 255 has been exceeded.
RD_LEN OUTPUT |INT Q,M,D,L Indicates the byte length of the reading
result received
REQ_DONE |OUTPUT |BOOL |Q,M,D,L Indicates whether a ColLa command
has been sent and a response received
TRUE: Successfully completed
FALSE: Not yet completed
The command response is available in
the memory area referenced by the
#RECORD parameter.
REQ BUSY |OUTPUT |BOOL |Q,M,D,L REQ command in progress
REQ LEN OUTPUT |INT Q,M,D,L Length of a response telegram in BYTES
REQ_ OUTPUT |BOOL |Q,M,D,L REQ error status:
ERROR
0: No error
1: Aborted with error
RD _ERROR |OUTPUT |BOOL |Q,M,D,L RD error status:
0: No error
1: Aborted with error
REQ_ERROR |OUTPUT |WORD |Q,M,D,L REQ error status (see "Error codes")
CODE
RD_ERROR |OUTPUT |WORD |Q,M,D,L RD error status (see "Error codes")
CODE
ENO OUTPUT |BOOL |Q,M,D,L Enable output (LD and FBD)

13

ColLa TCP Function Block for CP Modules

4 Block description

4.5 Error codes
The REQ_ERRORCODE and RD_ERRORCODE parameters contain the following error

information:
Error code | Brief description Description
W#16#0000 | No error No error
W#16#0001 | Invalid memory area Invalid memory area for specified ANY pointer.
specified for #RECORD A DB must be assigned to the pointer.
pointer
W#16#0002 | Invalid pointer length The referenced data block is shorter than the
specified for #RECORD length defined by the pointer.
pointer
W#16#0003 | Invalid memory area Invalid memory area for specified ANY pointer.
specified for #COMMAND | A DB must be assigned to the pointer.
pointer
W#16#0004 | Invalid pointer length The referenced data block is shorter than the
specified for #COMMAND | length defined by the pointer.
pointer
W#16#0005 | Timeout The command could not be executed within the
selected timeout period.
Possible causes:
- Device is not connected to the PLC
- Incorrect communication parameters
-CoLa commands have been used that do not
send back responses (echo).
- Command processing time > timeout period
W#16#0006 | Invalid command length The command being sent is longer than the
specified command length (COMMAND_LEN).
W#16#0007 | Invalid ColLa There is no [STX] [ETX] framing for the specified
command ColLa command.
W#16#000A | Telegram received > The received telegram is longer than the specified
#RECORD length #RECORD length.
W#16#000B | Telegram received - A telegram was received without [STX] [ETX]
without control characters framing.
- The received telegram is longer than the
specified #RECORD length.
W#16#8XXX | AG_RECV_TCP_xVAR/ | For a description of the error, see the Step7

AG_SEND error

help system.

14

ColLa TCP Function Block for CP Modules 5 Example

5 Example

Figure 9 shows an example of a connected CCOM_TCP_CP function block. The TCP
connection to the SICK sensor has been configured in advance using NetPro and the (ID)
and (LADDR) connection parameters transferred to the function block.

Program call:

DE11
"INSTANCE
FE1l"
FE11
ZICKE CoLa FB for
TCP communication
with CP-Moduls

"CCOM TCD CP"

HEZ_0
. —|EN D _DOMNE|—"ED Done"
1 —ID HBE4

BD_COUNT |—"BD Count "
WHlsg100 — LADDR

A5G
THES = TOUT PI' LEN{="PD LEN"
H5Z_ 5 H5Z2_ 1
"REQ_ REQ_DONE —"REQ_Done"
Start" —{START_REQ
H5Z_Z
HE50 REQ_BUST = "REQ_Busy"
"Commarnd_ COMMAND
LEN" —{LEN AWSE
REQ_LEN—"REQ LEN"
PEDE]1 _DEXO
-0 H5Z_3
vorléufige "REQ_
Platzhalt REQ_ERROR—Erraor"
ervariahle
"DATA" . HE&0
COMMAND = COMMAND REQ_| "pEQ
ERRORCODE | Rrrorcode"
PFDE]1_DBEX1
oo.o HLZ_4
"DATA". BD_ERROR|—"PD_Error"

RECORD — RECOERD

HNGZ
BD | "D

ERRORCODE |—ERROBCODE "

ENO

Figure 9: Example of a connected CCOM_TCP_CP function block

15

ColLa TCP Function Block for CP Modules

5 Example

Table of variables for executing a CoLa command:
SHCCOM TCP CP function block

Mo 100 "REG_Start" BCOL Etrue

N Reading Result Status

Mo120 "RD_Done" BCOL false

MB 16 "RD_Count" DEC 23

Mo123 "RD_Error" BOOL false

Wi 24 "RD_Errorcoce” HEX W GR0000

I Reguesting Result Status

Moo12.4 "RE@_Done" BCOL true

M2 "REG_Busy" BCOL falze

Moo122 "REG_Error" BCOL falze

Wi 22 "REG_Errorcode” HEX WA BR0000
fCommanc

w14 "Command_Len" DEC 15 15
DE1CEE 0 ("DATA".COMMAND[T] CHARACTER 5 '
DB1CBE 1 ("DATA".COMMANDIZ] CHARACTER 's' 's'
DB1LCBE 2 ("DATA".COMMANDII] CHARACTER A" '
DB1LCBE 3 ("DATA".COMMAND[4] CHARACTER ' W'
DB1CBE 4 ("DATA".COMMANDIS] CHARACTER ' v
DB1LCBE 5 ("DATA".COMMANDIE] CHARACTER m m
DE1LCBE 6 ("DATA".COMMANDIT] CHARACTER T T
DB1LCBE 7 ("DATA".COMMANDIE] CHARACTER ! !
DB1LCBE 8 ("DATA".COMMANDIS] CHARACTER ' '
DB1CBE 9 ("DATA".COMMAMD[O] CHARACTER ‘g’ 'a'
DB1CBE 10 ("DATA".COMMAMD[11] CHARACTER 1 1
DBE1.CEE 11 ("DATA".COMMAMND[2] CHARACTER = e
DBE1.CEE 12 ("DATA".COMMAMND[3] CHARACTER o' o'
DBE1.CEE 13 ("DATA".COMMAMND[4] CHARACTER n' n'
DBE1.CEE 14 ("DATA".COMMAMND[S] CHARACTER 'L b
DBE1.CEBE 15 ("DATA".COMMAMND[E] CHARACTER B#1 600
DBE1.CBE 16 ("DATA".COMMAMND[T] CHARACTER B#1 600
DBE1.CEE 17 ("DATA".COMMAMND[E] CHARACTER B#1 600
DBE1.CBE 15 ("DATA".COMMAMND[19] CHARACTER B#1 600
DBE1.CEE 19 ("DATA".COMMAMND[Z0] CHARACTER B#1 600

The ColLa command ("[STX]sMN mTCgateon[ETX]" in this case) is executed as soon as the
"START_REQ" bit is triggered with a rising edge.

16

ColLa TCP Function Block for CP Modules 5 Example

Table of variables for incoming command responses:

! Record

WA 18 "RD_Len" DEC 50

Wi 20 "REG_Len" DEC 17
DB1.0CBE 100 :"DATA" RECORD[] CHARACTER !
DB1.CBE 101 ("DATA" RECORD[2] CHARACTER 's!
DB1.0BE 102 "DATA" RECORD[3] CHARACTER A
DB1.CBE 103 "DATA" RECORD[4] CHARACTER '
DB1.CBE 104 ("DATA" RECORD[S] CHARACTER '
DB1.CBE 105 "DATA" RECORD[E] CHARACTER m
DB1.CBE 106 "DATA" RECORD[T] CHARACTER T
DB1.CBE 107 ("DATA" RECORD[S] CHARACTER !
DB1.0CBE 108 "DATA" RECORD[9] CHARACTER '
DB1.0CBE 109 :"DATA"RECORD[0] CHARACTER ‘g’
DB1.CBE 110 :"DATA" RECORD[11] CHARACTER 1
DB1.CBE 111 ("DATA"RECORD[2] CHARACTER !
DB1.0BE 112 "DATA"RECORD[13] CHARACTER o'
DB1.CBE 113 "DATA"RECORD[14] CHARACTER n'
DB1.CBE 114 ("DATA"RECORD[145] CHARACTER '
DB1.CBE 115 "DATA" RECORD[16] CHARACTER !
DB1.CBE 116 "DATA" RECORD[7] CHARACTER h
DB1.0BE 117 ("DATA" RECORD[18] CHARACTER B 6400
DB1.CBE 118 "DATA"RECORD[19] CHARACTER B 6400
DB1.CBE 119 "DATA" RECORD[20] CHARACTER B 6400

The response (REQ) to a sent command (in this case: "[STX]sAN mTCgateon 1[ETX]")
becomes available in the record area when the value of the "REQ_DONE" output bit
changes from FALSE to TRUE (rising edge). The "REQ_LEN" parameter indicates how
many bytes were received and are valid.

17

ColLa TCP Function Block for CP Modules

5 Example

Table of variables for incoming reading results:

[f Recard

MY 15 "RD_Len" DEC 11
Wl 20 "REG@_Len" DEC 17
DB1.0BB 100 "DATA" RECORD[1] CHARACTER 9!
DB1.0BE 101 ("DATA" RECORD[Z] CHARACTER !
DBE1.0BE 102 ("DATA" RECORD[3] CHARACTER 2
DBE1.0BB 103 "DATA"RECORD[4] CHARACTER "7
DBE1.0BB 104 ("DATA" RECORD[S] CHARACTER ‘g
DBE1.0BB 105 "DATA" RECORD[E] CHARACTER g
DB1.0BB 106 "DATA" RECORD[T] CHARACTER ‘B’
DB1.0BB 107 "DATA" RECORD[E] CHARACTER T
DB1.0BB 105 "DATA"RECORD[9] CHARACTER 'g'
DBE1.0BB 109 "DATA"RECORD[10] CHARACTER 'g'
DB1.0BB 110 "DATA"RECORD[11] CHARACTER '
DBE1.0BB 111 "DATA"RECORD[12] CHARACTER '8!
DBE1.DBB 112 "DATA"RECORD[13] CHARACTER ‘o’
DB1.DBB 113 "DATA"RECORD[14] CHARACTER n'
DBE1.0BB 114 "DATA"RECORD[15] CHARACTER "
DBE1.0BE 115 "DATA"RECORD[1E] CHARACTER '
DBE1.0BE 116 "DATA"RECORD[17] CHARACTER e
DE1.0BE 117 "DATA"RECORD[18] CHARACTER B#1 600
DBE1.0BE 115 "DATA"RECORD[19] CHARACTER B#1 600

Data sent by the device (RD) is written to the record as soon as the function block receives
new data. For one PLC cycle, the "RD_DONE" bit indicates that new data has been received
(signal changes from FALSE to TRUE). The RD_COUNT counter is incremented as soon as
new data has been received. The "RD_LEN" parameter indicates how many bytes were

received and are valid.

18

