BETRIEBSANLEITUNG OPERATING INSTRUCTIONS NOTICE D'INSTRUCTION

# PAC50

Druckschalter PAC50 Pressure switch PAC50 Capteur de pression PAC50



Betriebsanleitung Operating instructions Notice d'instruction



DE EN FR

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte bleiben bei der Firma SICK AG. Eine Vervielfältigung des Werkes oder von Teilen dieses Werkes ist nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes zulässig. Eine Abänderung oder Kürzung des Werkes ist ohne ausdrückliche schriftliche Zustimmung der Firma SICK AG untersagt.

# Inhalt

| 1 Zu diesem Dokument                  |    |
|---------------------------------------|----|
| 2 Sicherheit                          | 7  |
| 3 Transport, Verpackung und Lagerung  |    |
| 4 Produktbeschreibung                 |    |
| 5 Installation/mechanischer Anschluss |    |
| 6 Elektrischer Anschluss              |    |
| 7 Betrieb und Parametereinstellungen  |    |
| 8 Fehler                              |    |
| 9 Technische Daten                    | 47 |
| 10 Wartung und Reinigung des Geräts   | 54 |
| 11 Rücksendung                        |    |
| Abbildungs- und Tabellenverzeichnis   |    |

## 1 Zu diesem Dokument

Bitte lesen Sie dieses Kapitel sorgfältig, bevor Sie mit dem PAC50 arbeiten. Technische Änderungen vorbehalten.

## 1.1 Funktion dieses Dokuments

Diese Betriebsanleitung leitet das technische Personal zur sicheren Montage, Elektroinstallation, Konfiguration und Inbetriebnahme des Druckschalters PAC50 an. Die Betriebsanleitung ist Produktbestandteil und muss in unmittelbarer Nähe des Gerätes für das Fachpersonal jederzeit zugänglich aufbewahrt werden.

#### Konformitäten und Zertifikate

Auf www.sick.com finden Sie Konformitätserklärungen, Zertifikate und die aktuelle Betriebsanleitung des Produkts. Dazu im Suchfeld die Artikelnummer des Produkts eingeben (Artikelnummer: siehe Typenschildeintrag im Feld "P/N" oder "Ident. no.").

Weitere Informationen:

- modellspezifische Online-Datenblätter f
  ür Ger
  äteausf
  ührungen mit technischen Daten, Ma
  ßzeichnungen und Diagrammen
- Maßzeichnungen und 3D-CAD-Maßmodelle in verschiedenen elektronischen Formaten
- weitere Publikationen im Zusammenhang mit den hier beschriebenen Sensoren (z. B. IO-Link)
- Publikationen zum Zubehör

## 1.2 Abkürzungen

| L+                     | Positiver Versorgungsanschluss                       | SP1                  | Schaltpunkt 1                                     |
|------------------------|------------------------------------------------------|----------------------|---------------------------------------------------|
| М                      | Negativer Versorgungsanschluss                       | SP2                  | Schaltpunkt 2                                     |
| Q <sub>1</sub>         | Schaltausgang 1                                      | RP1                  | Rückschaltpunkt 1                                 |
| <b>Q</b> <sub>2</sub>  | Schaltausgang 2                                      | RP2                  | Rückschaltpunkt 2                                 |
| MBA                    | Messbereichsanfang                                   | FH1                  | Obere Fenstergrenze 1                             |
| MBE                    | Messbereichsende                                     | FL1                  | Untere Fenstergrenze 1                            |
| C/Q <sub>1</sub>       | Mit IO-Link: Kommunikation /<br>Schaltausgang 1      | FH2                  | Obere Fenstergrenze 2                             |
| Q <sub>A</sub>         | Analogausgang                                        | FL2                  | Untere Fenstergrenze 2                            |
| LT                     | Leakage Tester                                       | p <sub>1</sub> /LTP1 | oberer Druckwert/Schwellenwert<br>Leckage-Messung |
| p <sub>2</sub> /LTP2   | unterer Druckwert/Schwellenwert<br>Leckage-Messung   | $p_0/p_{supply}$     | Systemdruck/Versorgungsdruck                      |
| t <sub>out</sub> /TOUT | Zeitbegrenzung/Zeitraum Leckage-<br>Messung          | dT                   | Zeitwert/Dauer Leckage-Messung                    |
| dP                     | festgestellte Druckdifferenz der Leckage-<br>Messung | QL                   | Leckage-Rate                                      |

| PAC50 |
|-------|
|-------|

| PVOL | Volumen der zu messenden<br>Druckanlage/-Leitungen            | AMODE     | Modus Analogausgang (dP oder dT)                                                         |
|------|---------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------|
| TimA | Timer A (Zeit vom Start der Messung bis zum Erreichen von p1) | MEAS      | Leckage-Messung läuft                                                                    |
| DONE | Leckage-Messung abgeschlossen                                 | Wait User | Sensor bereit zum Start der Leckage-<br>Messung (wartet auf Bedienung durch<br>Anwender) |

#### 1.3 Verwendete Symbole



#### WARNUNG!

... weist Sie auf konkrete oder potenzielle Gefahren hin. Dies soll Sie vor Unfällen bewahren.

Lesen und befolgen Sie Warnhinweise sorgfältig!

# 2 Sicherheit



## WARNUNG!

Bei Nichtbeachtung der nachfolgenden Sicherheitshinweise und Warnhinweise besteht die Gefahr von Personen- und Sachschäden.

#### 2.1 Autorisiertes Personal

Das Fachpersonal ist aufgrund seiner fachlichen Ausbildung, seiner Kenntnisse der Mess- und Regelungstechnik und seiner Erfahrungen sowie Kenntnis der landesspezifischen Vorschriften, geltenden Normen und Richtlinien in der Lage, die beschriebenen Arbeiten auszuführen und mögliche Gefahren selbstständig zu erkennen.

## 2.2 Bestimmungsgemäße Verwendung

Der PAC50 ist ein elektronischer Druckschalter zur Überwachung des Drucks in Druckluft. Er darf nur von autorisiertem Personal und nur in Industrieumgebungen benutzt werden. Bei jeder anderen Verwendung sowie bei Änderungen am PAC50 erlischt jeglicher Gewährleistungsanspruch gegenüber der SICK AG. Der PAC50 darf nur unter den in dieser Betriebsanleitung spezifizierten Prozess- und Umgebungsbedingungen betrieben werden.

## 2.3 Allgemeine Sicherheitshinweise und Schutzmaßnahmen

Das Gerät darf nur in einwandfreiem Zustand eingesetzt werden.

2.3.1 Elektroinstallationsarbeiten

- · Die Elektroinstallation darf nur durch autorisiertes Personal erfolgen
- Elektrische Verbindungen zwischen dem PAC50 und anderen Geräten nur in spannungsfreiem Zustand herstellen und lösen
- Nur im angegebenen Spannungsbereich betreiben
- Nur mit den in dieser Betriebsanleitung definierten Lasten betreiben

#### Sicherheit

- · Keine beschädigten Kabel verwenden (Kurzschlussgefahr, Wassereintritt über Kabel/Stecker)
- Leiterquerschnitte und deren korrekte Absicherung gemäß gültiger Normen wählen und ausführen
- Korrekte Montage/richtigen Sitz des Anschlusskabels prüfen
- Gehäuse nicht öffnen
- Bei Arbeiten an elektrischen Anlagen die gängigen Sicherheitsvorschriften beachten

## 2.3.2 Mechanischer Anschluss, Druckanschluss

- Die Montage darf nur durch autorisiertes Personal erfolgen
- · Nur im angegebenen Druckbereich betreiben
- · Nur mit dem mitgelieferten Zubehör verwenden
- · Produkt nicht öffnen, modifizieren oder erweitern
- Korrekte Montage/richtigen Sitz von Druckanschlüssen/Schläuchen prüfen
- · Beschädigte Dichtungen nicht verwenden (austauschen)
- · Dichtung nicht mit Werkzeug oder spitzen/scharfen Gegenständen montieren
- Nicht unter Druck montieren/demontieren
- Gerät nicht mechanisch belasten und nicht unter mechanischen Spannungen befestigen
- · Mechanische Spannungen durch Druckanschluss und durch elektrischen Anschluss vermeiden
- Ein unzulässiges Aufheizen des Geräts durch sich wiederholende Kompression der Druckluft ist zu vermeiden. Die minimal zulässige Periodendauer bei Druckschwankungen Δp ist in Abbildung 1 angegeben.



Abbildung 1: Minimal zulässige Periodendauer T bei maximaler Druckschwankung ApTransport, Verpackung und Lagerung

# 3 Transport, Verpackung und Lagerung

### 3.1 Lieferumfang

Lieferumfang mit dem Lieferschein abgleichen.

#### 3.2 Transport

Druckschalter auf eventuell vorhandene Transportschäden untersuchen. Offensichtliche Schäden unverzüglich mitteilen.

#### 3.3 Verpackung

Verpackung erst unmittelbar vor der Montage entfernen. Die Verpackung aufbewahren, denn diese bietet bei einem Transport einen optimalen Schutz (z. B. wechselnder Einbauort, Reparatursendung).

## 3.4 Lagerung

Zulässige Lagertemperatur: -20 ... +80 °C Lagern Sie den Druckschalter in trockener Umgebung.

# 4 Produktbeschreibung

Der PAC50 ermittelt den anliegenden Druck der Druckluft und setzt ihn in ein digitales Schaltsignal und (optional) ein analoges Ausgangssignal um. Der anliegende Druckwert wird in einem LCD-Display angezeigt. Die Einstellung der Parameter geschieht über drei große Drucktasten.

#### 4.1 Schaltfunktionen

4.1.1 Hysteresefunktion (Überdruck, für alle erhältlichen Messbereiche)

Bei steigendem Systemdruck schaltet der Ausgang bei Erreichen des jeweiligen Schaltpunktes (SP). Fällt der Druck wieder ab, schaltet der Ausgang erst wieder zurück, wenn der Rückschaltpunkt (RP) erreicht ist. Wenn der anliegende Druck um den am Druckschalter eingestellten Schaltpunkt schwankt, hält die Hysterese den Schaltzustand der Ausgänge stabil (siehe Abbildung 2).



Abbildung 2: Hysteresefunktion bei Überdruck

4.1.2 Hysteresefunktion (Unterdruck, nur für Messbereiche –1 ...0 bar und –1 ...+1 bar) Das Umschalten am Schaltpunkt geschieht bei fallendem Druck (stärkerer Unterdruck) und das Zurückschal-

ten am Rückschaltpunkt bei steigendem Druck (hin zu weniger starkem Unterdruck). Siehe Abbildung 3.



Abbildung 3: Hysteresefunktion bei Unterdruck

## 4.1.3 Fensterfunktion

Die Fensterfunktion erlaubt die Überwachung eines definierten Druckbereichs. Befindet sich der Systemdruck zwischen der unteren Fenstergrenze (FL) und der oberen Fenstergrenze (FH), ist der Ausgang aktiv (Schließer, n.o.) bzw. inaktiv (Öffner, n.c.) (siehe Abbildung 4).



12 Betriebsanleitung | SICK

#### 4.1.4 Verzögerungszeiten (0 bis 50 s)

Durch das Einstellen einer Verzögerungszeit wird ein unerwünschtes Schalten des Schaltausgangs bei kurzzeitigen Druckänderungen vermieden (Dämpfung).

Der Druck muss mindestens die eingestellte Verzögerungszeit anstehen, damit der Schaltausgang seinen Zustand ändert. Der Schaltausgang ändert seinen Zustand nicht sofort bei Erreichen des Schaltereignisses, sondern erst nach Ablauf der eingestellten Verzögerungszeit (siehe Abbildung 5).



Abbildung 5: Verzögerungszeiten

## 4.2 Drucktasten

Tabelle 1 zeigt die Tastenfunktionen (für genaue Parametereinstellungen siehe Kapitel 7).

- Die Drucktasten lassen sich ohne Werkzeug (Kugelschreiberspitze o.ä.) bedienen.
- Tasten nicht mit Werkzeugen, spitzen Gegenständen oder Fingernägeln drücken.

<aufwärts/Info>

<Eingabe>



Ð

<abwärts/Menü>

| PA | C50 |
|----|-----|
|----|-----|

|                               | Display-Modus                                                                                                                                                                                                                                                                        | Programmier-Modus                                                                                   |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| <aufwärts info=""></aufwärts> | Kurzer Tastendruck:<br>keine Funktion                                                                                                                                                                                                                                                | Kurzer Tastendruck:<br>• Menü aufwärts<br>• Parameterwert aufwärts/erhöhen                          |
|                               | Langer Tastendruck:<br>Anzeige der eingestellten Parameter<br>• SP1/FH1<br>• RP1/FL1<br>• SP2/FH2 (wenn vorh.)<br>• RP2/FL2 (wenn vorh.)<br>• Analogausgang (wenn vorh.)<br>• LOW<br>• HIGH                                                                                          | Langer Tastendruck:<br>• Menü aufwärts<br>• Parameterwert aufwärts/erhöhen                          |
| <abwärts menü=""></abwärts>   | Kurzer Tastendruck:<br>keine Funktion                                                                                                                                                                                                                                                | Kurzer Tastendruck:<br>• Menü abwärts<br>• Parameterwert abwärts/verringern                         |
|                               | Langer Tastendruck:<br>Wechsel in den Programmiermodus.<br>Bei gesetztem Passwort (* 0000) erfolgt Passwortabfrage.<br>Bei Eingabe des korrekten Passworts wechselt das Gerät<br>in den Programmiermodus. Andernfalls Rücksprung in den<br>Displaymodus                              | Langer Tastendruck:<br>• Menü abwärts<br>• Parameterwert abwärts/verringern                         |
| <eingabe></eingabe>           | Kurzer Tastendruck:<br>keine Funktion                                                                                                                                                                                                                                                | Kurzer Tastendruck:<br>• Auswahl des Menüeintrags<br>• Bestätigung des eingestellten Parameterwerts |
|                               | Langer Tastendruck (> 200ms) → Start der Leckage-<br>Messung (sofern Funktion vorhanden - nur PAC50-FGG) bzw.<br>→ Zurücksetzen in LT Messbereitschaft (Messung quittieren)<br>Während der Messung kann durch einen langen Tastendruck<br>(> 2 sec.) die Messung abgebrochen werden. |                                                                                                     |
| ▲ + ▼                         | keine Funktion                                                                                                                                                                                                                                                                       | Gleichzeitiger Tastendruck:<br>• Rücksprung in Display-Modus                                        |

Tabelle 1: Tastenfunktionen

## 4.3 Funktionsweise PAC50 LT (PAC50-FGG) zur Leckagemessung

## 4.3.1 Grundlegende Beschreibung der Variante

Der PAC50 LT Leakage Tester (PAC50-FGG) hat den Funktionsumfang der Variante PAC50-FGF mit einer zusätzlich integrierten Funktion zur Überprüfung eines geschlossenen Druckluftsystems bzw. eines Abschnittes eines Druckluftsystems auf Leckagen. Die IO-Link-Funktionalität ist bei dieser Variante nicht verfügbar!

Durch das Einstellen von 2 (Druck-) Schwellenwerten  $p_1$  und  $p_2$ , sowie einer gewünschten Zeitdauer der Messung  $t_{out}$  kann überprüft werden, ob ein geschlossenes Druckluftsystem oder ein geschlossener Abschnitt davon eine Leckage aufweisen.

Die Messung kann durch Knopfdruck oder über eine Steuerung (Eingangssignal auf Q1) gestartet werden. Q1 wird damit nicht als Schaltausgang verwendet, sondern als -eingang.

Sofern das System einen Druckabfall aufweist, und der obere Schwellenwert  $p_1$  durchlaufen wird, startet die Messung der Zeit bis entweder der untere Schwellenwert  $p_2$  durchlaufen wird oder das Ende der gewünschten Messdauer erreicht ist ( $t_{out}$ ). Über den Analogausgang des Sensors wird dann wahlweise (je nach Voreinstellung) der gemessene Zeitwert dT oder der Druckabfall dP übertragen. Beide Werte werden nach der Messung abwechselnd mit der Leckage-Rate QL in der unteren Zeile des Displays angezeigt. Bei Durchlaufen des unteren Schwellenwertes schlägt die Farbe des Displays in Rot um, um eine Leckage zu signalisieren.



Abbildung 6: Schematische Darstellung Leckagemessung

#### 4.3.2 Start der Leckagemessung

Nach Anschluss des Sensors an eine den Spezifikationen entsprechende Spannungsquelle, startet der Sensor und zeigt zuerst im Display die Initialisierung "SICK PAC50-LT" und die entsprechende Firmware-Version "FWv x.xx" an. Danach springt er sofort in den Leakage Tester Modus. Im Display erscheint der aktuell anliegende Systemdruck p<sub>0</sub> sowie "Wait" und "User" in den unteren beiden Zeilen. Im Display wird dabei alles in Grün angezeigt.

Durch einen längeren Druck (> 200 ms) auf die mittlere Taste 🗟 startet die Messung mit den voreingestellten Parametern. Werkseinstellung ist:

- p<sub>1</sub> = 0,6 bar
- p<sub>2</sub> = 0,4 bar
- t<sub>out</sub> = 30 Sekunden
- PVOL = 0,0 Liter
- Q<sub>A</sub> = dT

Alternativ kann die Messung über einen Impuls von einer Steuerung gestartet werden. Der Impuls wird dabei über Q1 als Eingangssignal an den Sensor gegeben.

4.3.3 Veränderung der Parameter im LT Modus

Durch einen langen Druck (> 2 Sekunden) auf die Taste  $\overline{\mathbf{v}}$  gelangt man zur Einstellung des LTP1. Um diesen zu verändern muss  $\widehat{\mathbf{v}}$  gedrückt werden. Per  $\overline{\mathbf{A}}$  oder  $\overline{\mathbf{v}}$  kann der Wert verändert werden. Um den gewünschten Wert zu übernehmen, muss erneut  $\widehat{\mathbf{v}}$  gedrückt werden.

Per Druck auf Taste ▼ gelangt man zur Einstellung LTP2 die analog LTP1 durchgeführt wird.

Im folgenden Menüschritt, der wiederum mit ▼ erreicht wird, kann das Volumen der zu messenden Anlage bzw. des zu messenden Abschnittes nach drücken von 🗟 über die Tasten ▲ oder ▼ eingestellt werden, sofern es dem Anwender bekannt ist. Wird das Volumen eingegeben, so erhält der Anwender nach Ende der Messung im Display die Information über die Leckagerate in L/min.

Im nächsten Schritt gelangt man wiederum durch Drücken der 💌 Taste zum Menüpunkt SET AMODE. Durch drücken von 🗟 kann danach per ▲ oder 💌 ausgewählt werden, ob über den Analogausgang der Wert für dT oder dP übertragen wird.

Als letzten Schrift gelangt man über  $\overline{\mathbf{v}}$  zum Menüpunkt STOP LT. Durch bestätigen mit  $\overline{\bigcirc}$  und Auswahl mit  $\overline{\mathbf{v}}$  oder  $\overline{\mathbf{v}}$  kann der Anwender an dieser Stelle entscheiden, ob er den Sensor im LT Modus verwenden möchte (Auswahl "NO"), oder ob er den Sensor in seiner Form als Druckschalter verwenden möchte (Auswahl "YES"). Die entsprechende Auswahl wird mit  $\overline{\bigcirc}$  bestätigt.

Nach erneutem Drücken der Taste 🔽 wird der Sensor dann im entsprechenden Modus in Messbereitschaft versetzt.

## 4.3.4 Veränderung der Parameter im LT Modus

Der Sensor ist in Messbereitschaft (siehe 4.3.2), die Anzeige im Display erscheint in Grün und die Messung wird entweder per Druck auf die Taste 🕤 manuell oder über Q1 als Schalteingang über die SPS gestartet. Im oberen Bereich des Displays wird immer der Aktuelle Messwert angezeigt! Bei der Messung können folgende Szenarien ablaufen:

4.3.4.1 Versorgungsdruck der Anlage  $p_0 < (Druck-)$  Schwellenwert  $p_1$  bzw  $p_2$ 

Nach Start der Messung geht der Sensor direkt in einen Fehlermodus, solange  $p_0$  nicht mindestens um 0,02 bar größer ist als der obere Schwellenwert  $p_1$ . Das Display schlägt um in Rot. Im Display erscheint unter dem aktuellen Messwert "WARN" und in der untersten Zeile erscheint "p< $p_1$ " sowie der Wert für  $p_1$  (z.B. "0,60") bzw. "p< $p_2$ " und der Wert für  $p_2$ .

Die Meldung muss per Tastendruck auf 🕞 quittiert werden, um den Sensor wieder in Messbereitschaft zu versetzen.

4.3.4.2 Versorgungsdruck  $p_0 > p_1$  und Erreichen von  $t_{out}$  vor Unterschreiten von  $p_1$ 

Nach Start der Messung läuft der Timer A los. Bis zum Erreichen von tout wird der obere Schwellenwert  $p_1$  nicht erreicht. Während der Messung erscheint in der oberen Statuszeile "TimA" mit der entsprechenden Zeitangabe in Sekunden und in der unteren Statuszeile "P>P<sub>1</sub>" mit der Angabe des Wertes für P1, z.B. "0.60". Die Messung stoppt sobald der Zeitwert für t<sub>out</sub> erreicht ist. In der oberen Statuszeile erscheint "DONE" um anzuzeigen, dass die Messung abgeschlossen ist. In der unteren Statuszeile erscheinen alternierend die Werte für dP (Druckdifferenz zw.  $p_0$  und dem aktuellen Druck bei Erreichen von t<sub>out</sub>), dT (entspricht in diesem Fall tout) und dem Wert für QL (Absolutwert sofern ein Volumen vorgegeben wurde bzw. "---QL" sofern Vol = 0 beibehalten wurde).

Die Meldung muss per Tastendruck auf 🗟 quittiert werden, um den Sensor wieder in Messbereitschaft zu versetzen.

4.3.4.3 Versorgungsdruck  $p_0 > p_1$  und Unterschreiten von  $p_1$  vor  $t_{out}$ 

Wird nach Start der Messung der obere Druckwert  $P_1$  unterschritten, so startet die Messung von dT. In der oberen Statuszeile erscheint dann "MEAS". In der unteren Zeile erscheinen alternierend die Werte für dP (Druckdifferenz zw. p0 und dem aktuellen Druck), für dT (Zeitraum in Sekunden seit Durchlaufen von  $p_1$ ) und QL. Nach Ablauf von tout erscheint "DONE" in der oberen Statuszeile, sowie alternierend das Ergebnis von dP, dT und QL in der unteren Statuszeile.

Die Meldung muss per Tastendruck auf 🕞 quittiert werden, um den Sensor wieder in Messbereitschaft zu versetzen.

4.3.4.4 Versorgungsdruck  $p_0 > p_1$  und Unterschreiten von  $p_1$  und  $p_2$  vor  $t_{out}$ 

Wird nach Start der Messung der obere Druckwert  $P_1$  unterschritten, so startet die Messung von dT. In der oberen Statuszeile erscheint dann "MEAS". In der unteren Zeile erscheinen alternierend die Werte für dP (Druckdifferenz zw. p1 und p2), für dT (Zeitraum in Sekunden seit Durchlaufen von  $p_1$  bis zum Erreichen von  $p_2$ ) und QL. Nach Unterschreiten des unteren (Druck-) Schwellenwertes  $P_2$  wechselt die Displayfarbe von Grün nach Rot (um zu signalisieren, dass eine Leckage vorhanden ist). In der oberen Statuszeile wird "DONE" angezeigt, sowie alternierend das Ergebnis von dP, dT und QL in der unteren Statuszeile. Die Meldung muss per Tastendruck auf  $\bigcirc$  quittiert werden, um den Sensor wieder in Messbereitschaft zu versetzen.



## 4.4 Display mit Farbumschaltung

Der PAC50 verfügt über ein hintergrundbeleuchtetes LCD-Display. Das Display ist in verschiedene Bereiche aufgeteilt (siehe Abbildung 6 und Tabelle 2).



Abbildung 7: Displaybereiche

|                       | Displaybereiche                       |                                                                                |                                   |                                    |                                           |
|-----------------------|---------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|------------------------------------|-------------------------------------------|
|                       | A                                     | В                                                                              | C1/C2                             | D1/D2                              | E1/E2                                     |
| Displaymodus          | Anzeige des anlie-<br>genden Drucks   | Schlüsselsymbol<br>falls Tastensperre<br>gesetzt, Eingestellte<br>Druckeinheit | Eingestellte Schalt-<br>schwellen | Schaltzustand<br>Schaltausgang 1/2 | Eingestellter Wert<br>der Schaltschwellen |
| Programmier-<br>modus | Wert des ausge-<br>wählten Parameters | Ausgewählter<br>Parameter                                                      | Zusatzinfo                        | Schaltzustand<br>Schaltausgang 1/2 | Eingestellter Wert<br>der Schaltschwellen |

Tabelle 2: Anzeige in Displaybereichen

|              | Displaybereiche                     |                                                                          |                                                    |       |       |
|--------------|-------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|-------|-------|
|              | А                                   | В                                                                        | C1/C2                                              | D1/D2 | E1/E2 |
| Displaymodus | Anzeige des anlie-<br>genden Drucks | Schlüsselsymbol<br>(bei Tastensperre),<br>eingestellte Druck-<br>einheit | Anzeige Mess-<br>bereitschaft<br>("WAIT" / "USER") |       |       |

| Messmodus             | Anzeige des anlie-<br>genden Drucks   | Eingestellte Druck-<br>einheit | C1: Status der<br>Leckage-Messung<br>(Wait User, MEAS<br>DONE) bzw. TimA bis<br>zum Erreichen von<br>P1, Fehlermeldung<br>("WARN") bei nicht<br>ausreichendem<br>Versorgungsdruck,<br>"DONE" nach<br>(fehlerfreiem)<br>Abschluss der<br>Messung<br>C2: Alternierend QL,<br>dT, dP<br>bzw. P>P1 bis zum<br>Erreichen von P1<br>oder P <p2 bis="" th="" zum<=""><th>D2: Zustand<br/>"Aktivierung<br/>Leckage-Messung"</th><th>E1:Timer in<br/>Sekunden bis zum<br/>Erreichen von P1<br/>E2: Messwerte QL,<br/>dT, dP</th></p2> | D2: Zustand<br>"Aktivierung<br>Leckage-Messung" | E1:Timer in<br>Sekunden bis zum<br>Erreichen von P1<br>E2: Messwerte QL,<br>dT, dP |
|-----------------------|---------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------|
| Programmier-<br>Modus | Wert des ausge-<br>wählten Parameters | Ausgewählter<br>Parameter      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                                    |

Tabelle 3: Anzeige in Displaybereichen für den LT Modus

Bei Erreichen der eingestellten Schaltpunkte (SP1/2, RP1/2, FH1/2 oder FL1/2) wechselt die Farbe der dem jeweiligen Schaltpunkt zugeordneten Displaybereiche zwischen Grün und Rot.

Der Farbumschlag ist einstellbar mithilfe der Funktion "DISC":

- Rot bei Nichterreichen oder Unterschreiten des Schaltpunkts bzw. anliegender Druck innerhalb des definierten Fensters und Grün bei Überschreiten des Schaltpunkts bzw. anliegender Druck außerhalb des Fensters (Funktion "DISC": OD)
- Rot bei Überschreiten des Schaltpunkts bzw. anliegender Druck außerhalb des definierten Fensters und Grün bei Nichterreichen oder Unterschreiten des Schaltpunkts bzw. anliegender Druck innerhalb des Fensters (Funktion "DISC": DU)
- Immer Rot (ohne Farbumschlag, Funktion "DISC": RED)

- Immer gr
  ün (ohne Farbumschlag, Funktion "DISC": GRN)
- Energiesparmodus. Das Display ist ausgeschaltet. Durch Drücken einer der Tasten wird das Display f
  ür die Dauer von 10 s aktiviert (Funktion "DISC": OFF)

#### 4.5 IO-Link (wenn vorhanden)

Eine Beschreibung der IO-Link-Funktionen des PAC50 und die zugehörige IODD-Datei (IO-Link Device Description)-Datei finden Sie zum Download auf www.sick.com.

#### 4.6 Umweltgerechtes Verhalten

Der PAC50 ist so konstruiert, dass er die Umwelt so wenig wie möglich belastet. Er verbraucht nur ein Minimum an Energie. Handeln Sie auch am Arbeitsplatz immer mit Rücksicht auf die Umwelt. Beachten Sie deshalb die folgenden Informationen zur Entsorgung. Das Display des PAC50 lässt sich ausschalten (Funktion DISC). Dadurch wird die Stromaufnahme des Geräts verringert.

## 4.6.1 Entsorgung nach endgültiger Außerbetriebnahme

Entsorgen Sie unbrauchbare oder irreparable Geräte immer gemäß den jeweils gültigen landesspezifischen Abfallbeseitigungsvorschriften. Die SICK AG nimmt unbrauchbare oder irreparable Geräte nicht zurück.

# 5 Installation/mechanischer Anschluss



Einbau ohne mechanische Belastung auf den Druckschalter sicherstellen. Die im Abschnitt 9 (Technische Daten) spezifizierten Umgebungsbedingungen sind einzuhalten. Der Druckmessumformer darf keiner Betauung ausgesetzt werden.

#### 5.1 Montage an Hutschiene

Der Druckschalter PAC50 besitzt eine integrierte Befestigung zur Montage an einer Hutschiene nach DIN EN 60715; 35 mm x 15 mm/7,5 mm.

- Zur Montage setzen Sie den PAC50 mit der unteren Befestigungsf
  ührung an die Hutschiene an (siehe Abbildung 7 ①). und kippen Sie den PAC50 nach oben, bis er einrastet (siehe Abbildung 7 ② und ③).
- Zum Lösen des PAC50 von der Hutschiene ziehen Sie den Befestigungsclip nach unten und kippen Sie den PAC50 nach oben von der Hutschiene weg.



#### Abbildung 8: Montage an Hutschiene

#### 5.2 Montage mit Schalttafeleinbausatz

## 5.2.1 Standard Einbausatz - Artikel 2069200

Zur Montage in eine Schalttafel verwenden Sie den als Zubehör erhältlichen Schalttafeleinbausatz (siehe Abbildung 8). Die maximale Dicke der Schalttafel beträgt 5 mm. Abbildung 9 zeigt die Abmessungen des Ausschnitts in der Schalttafel.



Abbildung 9: Schalttafeleinbausatz

5.2.2 Robuster Einbausatz für anspruchsvolle Applikationen (Schock/Vibration) – Artikel 2099916 Zur Montage in eine Schalttafel verwenden Sie den als Zubehör erhältlichen Schaltafeleinbausatz für robuste Anwendungen (siehe Abbildung 10). Die maximale Dicke der Schalttafel beträgt 5 mm. Abbildung 11 zeigt die Abmessungen des Ausschnitts in der Schalttafel.



Abbildung 10: Schalttafeleinbausatz, robust



- Setzen Sie den Schalttafel-Einbaurahmen von außen in die Schalttafel ein, sodass die Öffnungen für die Befestigungsschienen nach oben zeigen [1].
  - Schieben Sie die Befestigungsschienen von oben in den Schalttafel-Einbaurahmen bis zu dem Anschlag ein [2].
- Schrauben Sie die vier vorverschraubten, kurzen Befestigungsschrauben f
  ür die Befestigungsschienen vorsichtig bis zum Anschlag ein (max. 8 Ncm) [3].
- Setzen Sie von der Rückseite den Druckschalter in die Aufnahme des Schalttafeleinbaurahmens ein [4].
  - Befestigen Sie das Befestigungselement in der Hutschienenaufnahme des Druckschalters [5].
- Verschrauben Sie vorsichtig das Befestigungselement mit den Befestigungsschienen mit den beiden langen Befestigungsschrauben (max. 8 Ncm) [6].
- Ziehen Sie alle Schrauben vorsichtig nach (max. 8 Ncm).

## 5.3 Montage mit Wandmontagesatz

Befestigen Sie das Befestigungselement in der Hutschienenaufnahme des Druckschalters, siehe Abbildung 10.



Abbildung 12: Montage mit Wandmontageset

Abbildung 11: Öffnung in Schalttafel

## 5.4 Druckanschluss über die G<sup>1</sup>/<sub>4</sub>-Innengewinde (Abbildung 13)

Verwenden Sie eine geeignete Dichtung. Dichtung nicht mit Werkzeug oder spitzen/scharfen Gegenständen montieren. Achten Sie auf saubere und unbeschädigte Dichtflächen am Gerät und an der Messstelle. Verwenden Sie nur gerade (keine konischen) G ¼-Außengewinde mit dem PAC50. Verwenden Sie nur axial am Außenflansch abdichtende Verschraubungen mit einer maximalen Eindrehtiefe von 9 mm. Die Verwendung falscher Anschlussgewinde kann zur Zerstörung des Geräts führen. Vermeiden Sie beim Einschrauben ein Verkanten der Gewindegänge. Ein Anzugsdrehmoment von 1,5 Nm ±0,5 Nm ist einzuhalten. Dieser Wert darf nicht überschritten werden. Das nicht verwendete G ¼-Innengewinde ist mit dem mitgelieferten Blindstopfen zu verschließen. Dichtung bei Blindstopfen einlegen und mit 1 Nm ±0,3 Nm anziehen.



MA = 1 Nm +/- 0,3 Nm

Abbildung 13: Druckanschluss G 1/4-Innengewinde

5.5 Druckanschluss über Steckverbindung für Pneumatikschlauch (Push-In-Fitting, Abbildung 14) Der Steckanschluss ist geeignet für Pneumatikschläuche mit 4 mm Außendurchmesser. Prüfen Sie den korrekten Sitz des eingesteckten Pneumatikschlauchs bevor Sie den Druckschalter mit Druck beaufschlagen. Das rückseitige G ¼-Innengewinde ist mit dem mitgelieferten Blindstopfen zu verschließen. Dichtung bei Blindstopfen einlegen und den Blindstopfen mit einem Innensechskantschlüssel (6 mm) mit einem Anzugsdrehmoment von 1 Nm ±0,3 Nm anziehen. Zum Lösen des Pneumatikschlauchs drücken Sie gegen den grauen Kunststoffring des Steckanschlusses und ziehen Sie den Pneumatikschlauch vorsichtig ab.



Abbildung 14: Steckanschluss für Pneumatikschlauch 4 mm (Push-In-Fitting, PIF)

## 5.6 Prozessanschluss über 1/4" NPT-Innengewinde (Abbildung 15)

Alle Varianten mit Typcode PAC50-xNx verfügen an der Geräteunterseite über einen Prozessanschluss mit einem konischen ¼" NPT Innengewinde. Dies hat zur Folge, dass der an der Rückseite befindliche alternative Prozessanschluss mit G ¼" Parallelgewinde nicht verwendet werden kann.

Der G ¼" Blindstopfen vom rückwärtigen Prozessanschluss ist nicht kompatibel mit dem konischen ¼" NPT Innengewinde. Er darf daher nicht zum Verschluss des an der Gehäuseunterseite befindlichen ¼" NPT Prozessanschlusses verwendet werden. Dies kann zur Zerstörung des Sensors führen. Die Eindrehtiefe für den ¼" NPT Prozessanschluss an der Unterseite beträgt max. 9 mm.



Abbildung 15: 1/4" NPT-Innengewinde

# 6 Elektrischer Anschluss

Der elektrische Anschluss geschieht über Rundsteckverbinder M12 x 1. Tabelle 3, Abbildung 13, Tabelle 4 und Abbildung 14 zeigen die Pinbelegungen der unterschiedlichen Gerätevarianten/vorhandenen Ausgangssignale.



## VORSICHT!

Beachten Sie die Angaben zu den elektrischen Eigenschaften des Druckschalters in Abschnitt 9 (Technische Daten).

| Ausgangssignale               | Typbezeichnung | Elektrischer Anschluss | Pinbelegung                                                         |
|-------------------------------|----------------|------------------------|---------------------------------------------------------------------|
| 2 x digital                   | PAC50-xxA      | M12 x 1, 4-polig       | L <sup>+</sup> = 1, M = 3, Q <sub>1</sub> = 4, Q <sub>2</sub> = 2   |
| 1 x digital + analog          | PAC50-xxB      | M12 x 1, 4-polig       | L <sup>+</sup> = 1, M = 3, Q <sub>1</sub> = 4, Q <sub>A</sub> = 2   |
| 1 x IO-Link/digital + digital | PAC50-xxD      | M12 x 1, 4-polig       | L <sup>+</sup> = 1, M = 3, C/Q <sub>1</sub> = 4, Q <sub>2</sub> = 2 |

Tabelle 4: Pinbelegung nach Ausgangssignal, 4-polig



Abbildung 16: Pinbelegung M12 x 1, 4-polig

| Ausgangssignale                           | Typbezeichnung | Elektrischer Anschluss | Pinbelegung                                   |
|-------------------------------------------|----------------|------------------------|-----------------------------------------------|
| 2 x digital + analog                      | PAC50-xxC      | M12 x 1, 5-polig       | $L^* = 1, M = 3, Q_1 = 4, Q_2 = 2, Q_A = 5$   |
| 1 x IO-Link/digital + digital<br>+ analog | PAC50-xxF      | M12 x 1, 5-polig       | $L^* = 1, M = 3, C/Q_1 = 4, Q_2 = 2, Q_A = 5$ |

Tabelle 5: Pinbelegung nach Ausgangssignal, 5-polig





Abbildung 17: Pinbelegung M12 x 1, 5-polig

Der Leakage-Tester ist eine Variante PAC50-FGG, die hinsichtlich der Ausgangssignale und PIN-Belegung gleich wie PAC50-xxF beim 5-poligen Stecker beschrieben ist.

| Artikelnummer | Geräte-Typ | Messbe-<br>reich | Gerätemodus    | Ausgangssignal                                               | Eingangssignal                        |
|---------------|------------|------------------|----------------|--------------------------------------------------------------|---------------------------------------|
| 1098276       | PAC50-FGG  | -1+10 bar        | Standard Modus | PNP/NPN/Push-Pull<br>+ PNP/NPN/Push-Pull<br>+ 420 mA / 010 V |                                       |
|               |            |                  | Leakage Tester | PNP/NPN/Push-Pull<br>+ 420 mA / 010 V                        | Digitaler Schalteingang PNP<br>(C/Q1) |

Tabelle 6: Ausgangssignale Leckage-Tester

# 7 Betrieb und Parametereinstellungen

## 7.1 Initialisierung

Nach dem Anschließen an die Spannungsversorgung leuchten alle Segmente des Displays für die Zeitdauer von 2 s in der Grundfarbe, danach 2 s in der Warnfarbe, um die fehlerfreie Funktion aller Segmente überprüfen zu können. Anschließend werden die folgenden Anzeigen für 2 s dargestellt:

- Displaybereich A: "SICK"
- Displaybereich B: "PAC50 bzw. PAC50-LT bei Variante PAC50-FGG"
- Displaybereiche C2 und E2: "Firmwareversion"

Anschließend geht das Gerät in den Display-Modus.

## 7.2 Im Betrieb: Display-Modus

Die Mess- und Schaltfunktionen sind in Betrieb.

 Das Gerät verfügt über einen Energiesparmodus, in dem das Display abgeschaltet wird (Funktion "DISC"). Im Energiesparmodus (DISC: OFF) wird das Display beim Drücken einer der Tasten wieder kurzzeitig (10 s) aktiviert.

## 7.3 Info-Modus

Nach längerem Drücken (> 3 s) der Taste A werden nacheinander für jeweils 3 s die folgenden Parameter im Display angezeigt (siehe "Parameterinfo" in Abschnitt 2). Im Anschluss wechselt das Gerät in den Display-Modus zurück:

- SP1/FH1 (Einstellung des Schaltpunkts 1 / der oberen Fenstergrenze 1)
- RP1/FL1 (Einstellung des Rückschaltpunkts 1 / der unteren Fenstergrenze 1)
- SP2/FH2 (Einstellung des Schaltpunkts 2 / der oberen Fenstergrenze 2)
- RP2/FL2 (Einstellung des Rückschaltpunkts 2 / der unteren Fenstergrenze 2)
- Analogausgang (elektr. Ausgangssignal in mA oder V)
- LOW (seit dem letzten Rücksetzen gespeicherter, minimal anliegender Druckwert)
- HIGH (seit dem letzten Rücksetzen gespeicherter, maximal anliegender Druckwert)

Der Info-Modus kann vorzeitig durch gleichzeitiges Drücken der Tasten 🔺 und 🔽 oder durch Drücken der mittleren Taste 🕞 verlassen werden.

#### 7.4 Programmier-Modus

## 7.4.1 Einstellen der Geräteparameter

Um in den Programmier-Modus zu wechseln, muss die Taste 🔽 länger als 2 s betätigt werden. Bei längerer Inaktivität im Programmier-Modus (> 15 s) springt das Gerät automatisch wieder in den Display-Modus. Während sich das Gerät im Programmier-Modus befindet, laufen (im Hintergrund) die Mess- und Schaltfunktionen weiter.

Auswahl:

- Zunächst ist der Parameter/Menüpunkt, der eingestellt werden soll, mithilfe der Tasten ▲ und ▼ auszuwählen. Dabei hilft der Hinweis im Displaybereich B: "SET".

Einstellen:

- Der einzustellende Parameterwert wird im Displaybereich A angezeigt. Die Displaybereiche C1/2 und E1/2 zeigen die bislang eingestellten Parameterwerte.
- 🔹 Mit den Tasten 🔺 und 💟 wird der Parameter eingestellt und schließlich mit der Taste 😔 bestätigt.
- In dem Moment, in dem ein ausgewählter Parameterwert durch Drücken der Taste 

   bestätigt wird, wird
   die Einstellung aktiv, auch wenn sich der Druckschalter noch im Programmier-Modus befindet.

## 7.4.2 Menüstruktur, Beschreibung der Parameter und Werkseinstellungen (Abbildung 14)



| Wertebereich                        | Werkseinstellungen |
|-------------------------------------|--------------------|
| Min: MBA +0,2% der Spanne, Max: MBE | MBE                |
| Min: MBA, Max: MBE -0,2% der Spanne | MBE - 10 %         |
| Min: MBA +0,2% der Spanne, Max: MBE | MBE                |
| Min: MBA, Max: MBE -0,2% der Spanne | MBE - 10 %         |
|                                     |                    |
| 0 50 s                              | 0 s                |
| HNO, HNC, FNO, FNC                  | HNO                |

| ĺ              |          |         | Beschreibung                                                                                                                                                                                                                            |
|----------------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | <b>→</b> | PARA    | Schaltfunktion Schaltausgang 2<br>(wenn 2. Schaltausgang vorhanden):<br>Hysteresefunktion, Schließer: HNO<br>Hysteresefunktion, Öffner: HNC<br>Fensterfunktion, Schließer: FNO<br>Fensterfunktion, Öffner: FNC<br>Diagnosefunktion: DIA |
| P-N            | <b>→</b> | PARA    | Schaltlogik der Schaltausgänge: PNP, NPN oder Push-Pull<br>(gilt für beide Schaltausgänge, falls 2. Schaltausgang vorhanden.                                                                                                            |
|                |          |         | Bei Option IO-Link ist Q1 immer PNP)                                                                                                                                                                                                    |
| OUA            | <b>→</b> | PARA    | (wenn Analogausgang vorhanden):                                                                                                                                                                                                         |
|                |          |         | Invertiertes Ausgangssignal 204 mA: IINV<br>Ausgangssignal: 010 V: U<br>Invertiertes Ausgangssignal 100 V: UINV<br>Automatische Detektion je nach anliegender Bürde (nicht-<br>invertierte Ausgangssignale): AUTO                       |
| ↓<br>UNIT      | <b>→</b> | Finheit | Finstellung der Druckeinheit im Display                                                                                                                                                                                                 |
| 1              |          | Linnoit |                                                                                                                                                                                                                                         |
| OSET           | <b>→</b> | YES/NO  | Korrektur Nullpunktoffset, max. 5%                                                                                                                                                                                                      |
| ↓<br>DISM<br>↓ | <b>→</b> | PARA    | Anzeige der Schaltpunkte/Fenstergrenzen in den Displayberei-<br>chen C und E: <b>SPRP</b><br>Anzeige der LOW/HIGH-Werte in den Displaybereichen C und E:<br>LOHi                                                                        |
| DISU           | <b>→</b> | Wert    | Display-Update                                                                                                                                                                                                                          |
| 1              |          |         |                                                                                                                                                                                                                                         |
| DISR           | <b>→</b> | YES/NO  | Displayanzeige im jeweiligen Anzeigefeld elektronisch auf den                                                                                                                                                                           |
| 1              |          |         | Kopf stellen                                                                                                                                                                                                                            |
| F | PA | С | 5 | 0 |
|---|----|---|---|---|
|   |    | - | - | - |

| Wertebereich                               | Werkseinstellungen |
|--------------------------------------------|--------------------|
| HNO, HNC, FNO, FNC, DIA                    | HNO                |
| PNP, NPN, P/P                              | PNP                |
| I, IINV, U, UINV, AUTO                     | AUTO               |
| BAR, MPA, KPA, PSI, inHg                   | BAR                |
| SPRP, LoHi                                 | -<br>SPRP          |
| 1/2/5/10 Displayaktualisierungen / Sekunde | 5/s                |
|                                            | NO                 |
|                                            |                    |



MBA: Messbereichsanfang MBE: Messbereichsende EF: Erweiterte Programmierfunktionen

| Wertebereich              | Werkseinstellungen |
|---------------------------|--------------------|
|                           |                    |
| OD, DU, RED, GRN, OFF     | OD                 |
|                           |                    |
| keine Einstellmöglichkeit | MBA                |
| keine Einstellmöglichkeit | MBE                |
|                           |                    |
|                           | -                  |
|                           |                    |
|                           | ohne               |
|                           |                    |
|                           |                    |

ohne

# 7.4.3 Menüstruktur PAC50-FGG (Leakage Tester)



| Wertebereich                                           | Werkseinstellungen |
|--------------------------------------------------------|--------------------|
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
| –1.00 0,02 + 0,02 +10.000 bar (MPa,<br>KPa, PSI, inHg) | 0,6 bar            |
|                                                        |                    |
| –1.00 0,02 + 0,02 +10.000 bar (MPa,<br>KPa, PSI, inHg) | 0,4 bar            |
|                                                        |                    |
| 1.0 9999 Sekunden                                      | 30 Sekunden        |
|                                                        |                    |
| 0.0 liter                                              | 0,0 Liter          |
|                                                        |                    |
| dp oder dT für Analogport                              | dT                 |
|                                                        |                    |
| YES oder NO für Leakage Tester Mode                    | LT Mode            |

# 8 Fehler

### 8.1 Fehler und Warnmeldungen (Anzeige blinkend in den Displaysegmenten A und B, Tabelle 5)

| Anzeige A | Anzeige B              | Zustand | Beschreibung                                                                                                                                                                                              | Notwendige Aktion                                                                                    |
|-----------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| OL        | OVERPRESS              | Fehler  | Anliegender Druck >Messbereichsende                                                                                                                                                                       | Druck innerhalb des Messbe-<br>reichs einstellen                                                     |
| UL        | UNDERPRES              | Fehler  | Anliegender Druck < Messbereichsanfang                                                                                                                                                                    | Druck innerhalb des Messbe-<br>reichs einstellen                                                     |
| ERR1      | GEN.ERROR              | Fehler  | Allgemeiner Fehler                                                                                                                                                                                        | Fa. SICK kontaktieren                                                                                |
| ERR2      | SHORTOUT1<br>SHORTOUT2 | Fehler  | Kurzschluss an einem der beiden Ausgänge<br>vorhanden                                                                                                                                                     | Kurzschluss beseitigen                                                                               |
| ERR3      | OVERVOLTG              | Fehler  | Anliegende Versorgungsspannung > 30 V DC                                                                                                                                                                  | Korrekte Einstellung der<br>Versorgungsspannung                                                      |
| ERR4      | LOW VOLTG              | Fehler  | Anliegende Versorgungsspannung < 17 V DC                                                                                                                                                                  | Korrekte Einstellung der<br>Versorgungsspannung                                                      |
| ATT1      | SHIFT RP1<br>SHIFT RP2 | Warnung | Schaltpunkteinstellung durch den Bediener unter-<br>halb des gesetzten Rückschaltpunkts. Der Rück-<br>schaltpunkt wird automatisch mit kleinstmöglicher<br>Hysterese unter den neuen Schaltpunkt gesetzt. | Durch Druck auf <eingabe>-<br/>Taste quittieren</eingabe>                                            |
| ATT2      | ADJ>LIMIT              | Warnung | Wird angezeigt, wenn beim Nullpunktabgleich der<br>anliegende Druck außerhalb der erlaubten Grenze<br>von 5% der Spanne liegt                                                                             | Durch Druck auf <eingabe>-<br/>Taste quittieren</eingabe>                                            |
| LOCK      | KEYLOCKED              | Warnung | Hinweis wird angezeigt, wenn bei aktiver Eingabe-<br>sperre versucht wird, in den Programmiermodus<br>zu gelangen                                                                                         | Eingabe des Passworts oder<br>Entsperren via IO-Link falls<br>Eingabe über IO-Link gesperrt<br>wurde |

Tabelle 7: Fehler und Warnmeldungen

### PAC50-FGG (Leakage Tester)

Nach Start der Messung geht der Sensor direkt in einen Fehlermodus, solange  $p_0$  nicht mindestens um 0,02 bar größer ist als der obere Schwellenwert  $p_1$ . Das Display schlägt um in Rot. Im Display erscheint unter dem aktuellen Messwert "WARN" (Display Position C1) und in der untersten Zeile erscheint "p< $p_1$ " (Display-position C2) sowie der Wert für p1 (z.B. "0,60" Displayposition E2) bzw. "p< $p_2$ " und der Wert für  $p_2$ . Die Meldung muss per Tastendruck auf O quittiert werden, um den Sensor wieder in Messbereitschaft zu versetzen.

# 8.2 Verhalten des Digitalausgangs im Fehlerfall

Der Schaltausgang 2 (wenn vorhanden) kann als Diagnoseausgang konfiguriert werden (Funktion "OU2"). Tabelle 8 zeigt die definierten Schaltzustände im Fehlerfall.

| Anzeige<br>im Display | Funktion                                                                     | Di                       | gitale Ausgän       | ge                  | Diagnos                  | seausgang: Ar<br>schaltend | ntivalent           |
|-----------------------|------------------------------------------------------------------------------|--------------------------|---------------------|---------------------|--------------------------|----------------------------|---------------------|
| (Bereich A)           |                                                                              | PNP-<br>Modus            | NPN-<br>Modus       | Push-Pull-<br>Modus | PNP-<br>Modus            | NPN-<br>Modus              | Push-Pull-<br>Modus |
| OL                    | Überdruck: anliegender<br>Druck >Messbereichsende                            | Normalbetrieb            |                     |                     |                          |                            | Low<br>NPN active   |
| UL                    | Unterdruck: anliegender<br>Druck <messbereichs-<br>anfang</messbereichs-<br> |                          |                     |                     |                          |                            |                     |
| ERR1                  | Allgemeiner Fehler                                                           |                          | High<br>Nur Pull-Up |                     | Low<br>Nur Pull-<br>Down | High<br>Nur Pull-Up        |                     |
| ERR2                  | Kurzschluss an einem<br>der beiden Ausgänge<br>vorhanden                     | Low<br>Nur Pull-<br>Down |                     |                     |                          |                            |                     |
| ERR3                  | Anliegende Versorgungs-<br>spannung > 30 V DC                                |                          |                     | Down                |                          |                            | Down                |
| ERR4                  | Anliegende Versorgungs-<br>spannung < 17 V DC                                |                          |                     |                     |                          |                            |                     |

Tabelle 8: Verhalten der digitalen Ausgänge im Fehlerfall





Abbildung 18: Verhalten des Analogausgangs im Fehlerfall (1)

Stromausgabe entsprechend gültigem Bereich nach NAMUR NE43: Max. Ausgangsstrom 20,5 mA / Min. Ausgangsstrom 3,8 mA. Der Übergang zwischen linearem Bereich MBA...MBE...OL kann im Bereich zwischen MBE und OL unstetig sein. (UL...MBA: dto.)



Abbildung 19: Verhalten des Analogausgangs im Fehlerfall (2) Deutliches "Überfahren" der Ausgangsspannung von 10 V zur Erhöhung der Robustheit in der Anlage bei Spannungsverschleppungen.

# 9 Technische Daten

# 9.1 Merkmale

| Medium            | Trockene Druckluft                                                                                                                                                                                                    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Druckluftqualität | Nach ISO 8573-1:2010<br>Max. Partikelgröße: ≤ 40 µm<br>Ölgehalt: 0–40 mg/m <sup>3</sup><br>Der Drucktaupunkt muss mindestens 15 °C unter der Umgebungs- und Mediums-<br>temperatur liegen und darf max. 3 °C betragen |
| Nullpunktabgleich | Max. 5 % der Spanne                                                                                                                                                                                                   |
| Messbereiche      | -1 bar 0 bar; -1 bar +1 bar; 0 bar +6 bar; 0 bar +10 bar; -1 10 bar                                                                                                                                                   |
| Prozesstemperatur | 0 °C 60 °C                                                                                                                                                                                                            |
| Schaltausgänge    | Je nach Variante 1 oder 2 Transistorschaltausgänge                                                                                                                                                                    |
|                   | PNP/NPN/Push-Pull einstellbar (bei Variante mit IO-Link: Schaltausgang 1: IO-Link/<br>PNP und Schaltausgang 2: PNP/NPN/Push-Pull umschaltbar)                                                                         |
|                   | Funktion: Schließer/Öffner, Fenster-/Hysteresefunktion frei einstellbar                                                                                                                                               |
|                   | Schaltspannung: Versorgungsspannung L+ – 2 V [V DC]                                                                                                                                                                   |
|                   | Max. Schaltstrom pro Schaltausgang: 100 mA                                                                                                                                                                            |
|                   | Varianten mit IO-Link: IO-Link Version 1.1                                                                                                                                                                            |
|                   | Schaltverzögerung: 0 s 50 s (programmierbar)                                                                                                                                                                          |
|                   | Schaltzeit ≤ 5 ms                                                                                                                                                                                                     |
| Diagnoseausgang   | Bei Varianten mit 2 Schaltausgängen: Schaltausgang 2 kann als Diagnoseausgang gesetzt werden. Im Fehlerfall: siehe Tabelle 8.2                                                                                        |

| Analoges Ausgangssignal | Optional, 4 mA 20 mA / 0 V 10 V. Automatische Umschaltung je nach ange-<br>schlossener Last oder fest einstellbar.<br>Ausgangssignale invertierbar: 20 mA 4 mA / 10 V 0 V |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Bürdewiderstand $R_{A}$ bei Stromausgang < 600 Ohm<br>Bürdewiderstand $R_{A}$ bei Spannungsausgang > 3 kOhm                                                               |
| Display                 | LCD mit LED-Hintergrundbeleuchtung (grün/rot), elektronisch um $180^{\circ}$ drehbar                                                                                      |
|                         | Druckanzeige: 4 Stellen, 16 Segmente                                                                                                                                      |
|                         | Druckeinheit in der Anzeige umschaltbar: bar, MPa, kPa, psi und inHg                                                                                                      |
|                         | Aktualisierung: 1000, 500, 200 und 100 ms (programmierbar)                                                                                                                |
|                         |                                                                                                                                                                           |

Tabelle 9: Merkmale

## 9.2 Performance

| Nichtlinearität             | $\leq$ $\pm$ 0,5 % der Spanne (Best Fit Straight Line, BFSL) nach IEC 61298-2                                                                                                                        |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Genauigkeit                 | ≤ ± 1,5 % der Spanne<br>≤ ± 2,0 % der Spanne inkl. Temperaturfehler<br>(Einschließlich Nichtlinearität, Hysterese, Nullpunkt- und Endwertabweichung<br>(entspricht Messabweichung nach IEC 61298-2)) |
| Nichtwiederholbarkeit       | ≤ ± 0,2 % der Spanne                                                                                                                                                                                 |
| Bemessungstemperaturbereich | 10 °C +60 °C                                                                                                                                                                                         |

Tabelle 10: Performance

### 9.3 Mechanik/Elektronik

| Prozessanschluss                  | 2 x G ¼ <sup>1)</sup><br>PIF 4 mm + G ¼ <sup>2)</sup><br>¼ NPT <sup>3)</sup>                                                                         |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anschluss                         | Rundsteckverbinder M12 x 1, 4-polig bei 1 Schaltausgang + Analogausgang<br>Rundsteckverbinder M12 x 1, 5-polig bei 2 Schaltausgängen + Analogausgang |
| Versorgungsspannung <sup>4)</sup> | 17 V DC 30 V DC                                                                                                                                      |
| Stromaufnahme                     | Max. 40 mA bei L* = 24 V DC                                                                                                                          |
| Initialisierungszeit              | 300 ms                                                                                                                                               |
| Gehäusematerial                   | Gehäuse: Polycarbonat, Tastatur: TPE, Hutschienenbefestigung: POM, Dichtungen: NBR                                                                   |
| Elektrische Sicherheit            | Schutzklasse: III                                                                                                                                    |
|                                   | Überspannungsschutz: 32 V DC                                                                                                                         |
|                                   | Kurzschlussfestigkeit: $\textbf{Q}_{_{A^{\prime}}}\textbf{Q}_{_{1^{\prime}}}\textbf{Q}_{_{2}}$ gegen M und gegen L^+                                 |
|                                   | Verpolschutz: L* gegen M                                                                                                                             |
| CE-Konformität                    | EMV-Richtlinie: 2004/108/EG, EN 61326-2-3                                                                                                            |
| RoHS-Zertifikat                   | Ja                                                                                                                                                   |
| cULus-Zertifikat                  | Ja                                                                                                                                                   |

<sup>1)</sup> Unterseite: G ¼-Innengewinde, Rückseite: G ¼-Innengewinde, beide nach DIN ISO 16030

<sup>2)</sup> Unterseite: Push-in Fitting für 4 mm Pneumatikschlauch, Rückseite: G ¼-Innengewinde nach DIN ISO 16030

3) Unterseite: 1/4" NPT-Innengewinde

<sup>4)</sup> Verwenden Sie zur Stromversorgung einen energiebegrenzten Stromkreis gemäß UL61010-1 3rd Ed, Abschn. 9.4

| Betriebsanleitung | Technische Daten                                                               | PAC50  |
|-------------------|--------------------------------------------------------------------------------|--------|
| Schutzart         | IP 65 und IP 67 nach IEC 60529, im gesteckten Zustand mit geei<br>Gegenstecker | gnetem |
| Gewicht           | ca. 40 g                                                                       |        |

Tabelle 11: Mechanik/Elektronik

# 9.4 Umgebungsdaten

| Umgebungstemperatur  | 0 °C +60 °C                                                           |
|----------------------|-----------------------------------------------------------------------|
| Lagertemperatur      | -20 °C +80 °C                                                         |
| Relative Luftfeuchte | < 90 %                                                                |
| Schockbelastung      | max. 30 g, xyz, nach DIN EN 60068-2-27 (11 ms, Schock mechanisch)     |
| Vibrationsbelastung  | max. 5 g, xyz, nach IEC 60068-2-6 (10 150 Hz, Vibration bei Resonanz) |

Tabelle 12: Umgebungsdaten

### Maßbilder

Maße in mm





Abbildung 20: PAC50 mit Prozessanschluss G 1/4" / 1/4" NPT





Abbildung 21: PAC50 mit Push-in Fitting

### Maßbilder Zubehör





Abbildung 23: Wandhalterungsmontage



M4x30 (2x)

Abbildung 22: Einbau in Schalttafel

# 10 Wartung und Reinigung des Geräts

- Das Gerät ist wartungsfrei
- Vor der Reinigung den Druckschalter ordnungsgemäß von der Druckversorgung und von der Spannungsversorgung trennen
- Nur mit einem leicht angefeuchteten Tuch reinigen (Wasser-Seifenlösung)
- Elektrische Anschlüsse nicht mit Feuchtigkeit in Berührung bringen
- Keine aggressiven Reinigungsmittel verwenden wie beispielsweise Industriealkohol, Waschbenzin, Verdünnungsmittel, etc.

# 11 Rücksendung

Beim Versand des Gerätes unbedingt beachten:

- Alle an SICK gelieferten Geräte müssen frei von Gefahrstoffen (Säuren, Laugen, Lösungen, etc.) sein.
- Zur Rücksendung des Gerätes die Originalverpackung oder eine geeignete Transportverpackung verwenden
- · Dem Gerät ist eine vollständige und unterzeichnete Unbedenklichkeitserklärung beizulegen
- · Die Unbedenklichkeitserklärung befindet sich auf www.sick.de

# Abbildungs- und Tabellenverzeichnis

| Abbildung 1: Minimal zulässige Periodendauer T bei maximaler Druckschwankung ApTransport,          |    |
|----------------------------------------------------------------------------------------------------|----|
| Verpackung und Lagerung                                                                            | 9  |
| Abbildung 2: Hysteresefunktion bei Überdruck                                                       | 11 |
| Abbildung 3: Hysteresefunktion bei Unterdruck                                                      | 12 |
| Abbildung 4: Fensterfunktion                                                                       | 12 |
| Abbildung 5: Verzögerungszeiten                                                                    | 13 |
| Abbildung 6: Schematische Darstellung Leckagemessung                                               | 16 |
| Abbildung 7: Displaybereiche                                                                       | 20 |
| Abbildung 8: Montage an Hutschiene                                                                 | 23 |
| Abbildung 9: Schalttafeleinbausatz                                                                 | 24 |
| Abbildung 10: Schalttafeleinbausatz, robust                                                        | 25 |
| Abbildung 11: Öffnung in Schalttafel                                                               | 26 |
| Abbildung 12: Montage mit Wandmontageset                                                           | 26 |
| Abbildung 13: Druckanschluss G 1/4-Innengewinde                                                    | 27 |
| Abbildung 14: Steckanschluss für Pneumatikschlauch 4 mm (Push-In-Fitting, PIF)                     | 28 |
| Abbildung 15: 1/4" NPT-Innengewinde                                                                | 29 |
| Abbildung 16: Pinbelegung M12 x 1, 4-polig                                                         | 30 |
| Abbildung 17: Pinbelegung M12 x 1, 5-polig                                                         | 31 |
| Abbildung 18: Verhalten des Analogausgangs im Fehlerfall (1)                                       | 45 |
| Abbildung 19: Verhalten des Analogausgangs im Fehlerfall (2) Deutliches "Überfahren" der Ausgangs- |    |
| spannung von 10 V zur Erhöhung der Robustheit in der Anlage bei Spannungs-                         |    |
| verschleppungen                                                                                    | 46 |
| Abbildung 20: PAC50 mit Prozessanschluss G 1/4" / 1/4" NPT                                         | 52 |
| Abbildung 21: PAC50 mit Push-in Fitting                                                            | 52 |
| Abbildung 22: Einbau in Schalttafel                                                                | 53 |
| Abbildung 23: Wandhalterungsmontage                                                                | 53 |

| 1710000 |
|---------|
|---------|

| Tabelle 1: Tastenfunktionen                               | 14 |
|-----------------------------------------------------------|----|
| Tabelle 2: Anzeige in Displaybereichen                    | 20 |
| Tabelle 3: Anzeige in Displaybereichen für den LT Modus   | 21 |
| Tabelle 4: Pinbelegung nach Ausgangssignal, 4-polig       | 30 |
| Tabelle 5: Pinbelegung nach Ausgangssignal, 5-polig       |    |
| Tabelle 6: Ausgangssignale Leckage-Tester                 | 31 |
| Tabelle 7: Fehler und Warnmeldungen                       | 42 |
| Tabelle 8: Verhalten der digitalen Ausgänge im Fehlerfall | 44 |
| Tabelle 9: Merkmale                                       |    |
| Tabelle 10: Performance                                   |    |
| Tabelle 11: Mechanik/Elektronik                           |    |
| Tabelle 12: Umgebungsdaten                                | 50 |

This work is protected by copyright. The associated rights are reserved by SICK AG. Reproduction of this document or parts of this document is only permissible within the limits of the legal provisions of the Copyright Act. Alteration or abridgment of the document is not permitted without the explicit written approval of SICK AG.

# Content

| 1 About this document                | 60  |
|--------------------------------------|-----|
| 2 Safety                             | 63  |
| 3 Transport, packaging, and storage  |     |
| 4 Product description                | 67  |
| 5 Installation/Mechanical connection | 79  |
| 6 Electrical connection              |     |
| 7 Operation and parameter settings   |     |
| 8 Errors                             |     |
| 9 Technical data                     |     |
| 10 Device maintenance and cleaning   |     |
| 11 Returns                           |     |
| List of figures and tables           | 111 |

# **1** About this document

Please read this section carefully before you begin working with the PAC50. We reserve the right to make technical modifications.

### 1.1 Function of this document

These operating instructions are intended to allow the technical personnel to perform mounting, electrical installation work, configuration, and commissioning on the PAC50 pressure switch in a safe manner. They constitute an integral part of the product and should be stored in the direct vicinity of the device so they remain accessible to the technical personnel at all times.

### **Conformities and certificates**

At www.sick.com you will find declarations of conformity, certificates, and the current operating instructions for the product. To do so, enter the product part number in the search field (part number: see the entry in the "P/N" or "Ident. no." field on the type label).

Additional information:

- Model-specific online data sheets for device versions with technical data, dimensional drawings, and diagrams
- · Dimensional drawings and 3D CAD dimension models in various electronic formats
- · Additional publications relating to the sensors described here (e.g., IO-Link)
- Publications about accessories

## 1.2 Abbreviations

| L+                     | Positive supply connection                                | SP1                  | Switching point 1                                        |
|------------------------|-----------------------------------------------------------|----------------------|----------------------------------------------------------|
| М                      | Negative supply connection                                | SP2                  | Switching point 2                                        |
| Q <sub>1</sub>         | Switching output 1                                        | RP1                  | Reset point 1                                            |
| <b>Q</b> <sub>2</sub>  | Switching output 2                                        | RP2                  | Reset point 2                                            |
| LLR                    | Beginning of measuring range                              | FH1                  | Upper window limit 1                                     |
| ULR                    | End of measuring range                                    | FL1                  | Lower window limit 1                                     |
| C/Q <sub>1</sub>       | With IO-Link: communication/<br>switching output 1        | FH2                  | Upper window limit 2                                     |
| Q <sub>A</sub>         | Analog output                                             | FL2                  | Lower window limit 2                                     |
| LT                     | Leakage Tester                                            | p <sub>1</sub> /LTP1 | Upper pressure value/threshold of<br>leakage measurement |
| p <sub>2</sub> /LTP2   | Lower pressure value/threshold of leakage measurement     | $p_0/p_{supply}$     | System pressure/supply pressure                          |
| t <sub>out</sub> /TOUT | Time limit/time period of leakage measurement             | dT                   | Time value/duration of leakage measurement               |
| dP                     | Pressure difference calculated in the leakage measurement | QL                   | Leakage rate                                             |

| PVOL | Volume of the pressure system/<br>lines to be measured                        | AMODE     | Analog output mode (dP or dT)                                                                     |
|------|-------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------|
| TimA | Timer A (time it takes for p1 to be reached after the measurement is started) | MEAS      | Leakage measurement is in progress                                                                |
| DONE | Leakage measurement has been completed                                        | Wait User | Sensor ready for the leakage<br>measurement to be started<br>(waiting for the user to trigger it) |

### 1.3 Symbols used



#### WARNING!

... indicates a specific or potential hazard. This is intended to protect you against accidents. Read carefully and follow the warnings!

# 2 Safety



## WARNING!

Failure to observe the following safety notes and warnings may result in personal injury and material damage.

### 2.1 Authorized personnel

Due to their specialist training, knowledge of measuring and control technology, and experience, as well as their knowledge of country-specific regulations and the relevant standards and provisions, the technical personnel are able to perform the work described and detect any potential dangers independently.

### 2.2 Intended use

The PAC50 is an electronic pressure switch for monitoring the pressure of compressed air. It must only be used by authorized personnel and only in industrial environments. If the PAC50 is used for any other purpose or modified in any way, any warranty claim against SICK AG shall become void. The PAC50 is only to be operated under the specific process conditions and ambient conditions specified in these operating instructions.

## 2.3 General safety notes and protective measures

The device is only to be used if it is in perfect working order.

2.3.1 Electrical installation work

- · Only authorized personnel are allowed to perform the electrical installation work
- Electrical connections between the PAC50 and other devices may only be made and separated when there is no power to the system
- · Only operate within the specified voltage range
- · Only operate with the loads specified in these operating instructions
- · Do not use damaged cables (risk of short-circuiting or water ingress via the cable/male connector)

- Select and implement wire cross-sections and their correct fuse protection in accordance with the applicable standards
- · Check that mounting is correct and that the connecting cable is positioned appropriately
- Do not open the housing
- · Observe the standard safety requirements when working on electrical systems

# 2.3.2 Mechanical connection, pressure connection

- Only authorized personnel are permitted to perform mounting work
- · Only operate within the specified pressure range
- Only use the accessories provided
- Do not open, modify, or extend the product
- Check that mounting has been carried out correctly and that the pressure connections/hoses are positioned appropriately
- Do not use seals that are damaged (replace them)
- Do not install the seal using tools or pointed/sharp objects
- Do not carry out assembly/disassembly while the system is under pressure
- Do not subject the device to mechanical stress or attach it under mechanical tension
- Make sure that no mechanical tension is caused by the pressure connection and electrical connection
- Do not allow the device to heat up to an unacceptable level as a result of repeated compression of the compressed air. The minimum permissible period for pressure fluctuations Δp is specified in Figure 1.





Figure 1: Minimum permissible period T with maximum pressure fluctuation ApTransport, packaging, and storage

# 3 Transport, packaging, and storage

### 3.1 Scope of delivery

Compare the scope of delivery with the delivery note.

#### 3.2 Transport

Examine the pressure switch for any damage that may have occurred in transit. Report any obvious damage immediately.

### 3.3 Packaging

Do not remove packaging until immediately before mounting. Retain the packaging as it offers ideal protection during transport (e.g., when changing the installation site or sending for repair).

### 3.4 Storage

Permissible storage temperature:  $-20 \dots +80$  °C Store the pressure switch in a dry environment.

# 4 Product description

The PAC50 establishes the applied compressed air pressure and converts this to a digital switching signal and (as an option) an analog output signal. The applied pressure value is shown on an LCD display. The parameter settings are made using three large pushbuttons.

### 4.1 Switching functions

4.1.1 Hysteresis function (excess pressure in all available measuring ranges)

In the event of rising system pressure, the output switches upon reaching the appropriate switching point (SP). If the pressure drops again, the output does not switch back until the reset point (RP) has been reached. If the applied pressure fluctuates around the switching point set on the pressure switch, the hysteresis keeps the switching state of the outputs stable (see Figure 2).



Figure 2: Hysteresis function in the event of excess pressure

4.1.2 Hysteresis function (underpressure, only for measuring ranges  $-1 \dots 0$  bar and  $-1 \dots +1$  bar) Switchover at the switching point takes place when the pressure drops (increased underpressure), and switching back at the reset point takes place when the pressure increases (reduced underpressure). See Figure 3.



Figure 3: Hysteresis function in the event of underpressure

# 4.1.3 Window function

The window function enables monitoring of a defined pressure range. If the system pressure is between the lower window limit (FL) and upper window limit (FH), the output will be active (normally open contact, n.o.) or deactivated (normally closed contact, n.c.) (see Figure 4).



Figure 4: Window function

### 4.1.4 Delay times (0 to 50 s)

Setting a delay time prevents unwanted switching of the switching output during brief pressure changes (attenuation).

The pressure must be present for at least the set delay time to allow the switching output to change its status. The switching output does not change its status immediately on reaching the switching event; instead, it does so after the set delay time (see Figure 5).





# 4.2 Pushbuttons

Table 1 displays the pushbutton functions (for accurate parameter settings, see section 7).

- The pushbuttons can be operated without the need for tools (e.g., a ballpoint pen tip).
- Do not press the pushbuttons using tools, sharp objects, or fingernails.



```
<up/info>
```



<enter>



<down/menu>

**Operating Instructions** 

|                       | Display mode                                                                                                                                                                                                                                                                                                        | Programming mode                                                            |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| <up info=""></up>     | Brief press:<br>No function                                                                                                                                                                                                                                                                                         | Brief press:<br>• Moves menu up<br>• Increases/moves parameter value up     |
|                       | Long press:<br>Displays the set parameters<br>• SP1 / FH1<br>• RP1 / FL1<br>• SP2 / FH2 (if available)<br>• RP2 / FL2 (if available)<br>• Analog output (if available)<br>• LOW<br>• HIGH                                                                                                                           | Long press:<br>• Moves menu up<br>• Increases/moves parameter value up      |
| <down menu=""></down> | Brief press:<br>No function                                                                                                                                                                                                                                                                                         | Brief press:<br>• Moves menu down<br>• Decreases/moves parameter value down |
|                       | Long press:<br>Switches to programming mode.<br>A password prompt appears if a password is set (≠ 0000). If the<br>correct password is entered, the device switches to programming<br>mode; otherwise, it reverts back to display mode.                                                                             | Long press:<br>• Moves menu down<br>• Decreases/moves parameter value down  |
| <enter></enter>       | Brief press:<br>No function                                                                                                                                                                                                                                                                                         | Brief press:<br>• Selects menu entry<br>• Confirms the set parameter value  |
|                       | Long press (> 200 ms) $\rightarrow$ starts the leakage measurement (if<br>this function is available – only with PAC50-FGG) or $\rightarrow$ sets the LT<br>back to measurement standby (acknowledges the measurement)<br>During the measurement, the measurement can be canceled by<br>a long press (> 2 seconds). |                                                                             |
| ▲ + ▼                 | No function                                                                                                                                                                                                                                                                                                         | Simultaneous press:<br>• Returns to display mode                            |

Table 1: Pushbutton functions

70

# 4.3 Functional principle of PAC50 LT (PAC50-FGG) for leakage measurement

# 4.3.1 Basic description of the variant

The PAC50 LT Leakage Tester (PAC50-FGG) has the same scope of functions as variant PAC50-FGF as well as an additional integrated function for testing a closed compressed air system or a section of a compressed air system for leakages. The IO-Link functionality is not available with this variant.

By setting two (pressure) thresholds  $p_1$  and  $p_2$  as well as a desired measurement duration  $t_{out}$ , it can be tested whether a closed compressed air system or a closed section of such a system has a leakage. The measurement can be started by pressing a button or via a control (input signal at Q1). In this case, Q1 acts as a switching input rather than a switching output.

If the pressure in the system drops, and the upper threshold  $p_1$  is passed, the measurement of the time it takes for either the lower threshold  $p_2$  to be passed or for the end of the desired measurement duration ( $t_{out}$ ) to be reached is started. Either the measured time value dT or the pressure drop dP (depending on the presetting) is then transmitted via the analog output of the sensor. After the measurement, both values are displayed alternately with the leakage rate QL in the bottom line of the display. When the lower threshold is passed, the color of the display changes to red to indicate a leakage.



Figure 6: Leakage measurement schematic diagram

### 4.3.2 Starting the leakage measurement

After connecting the sensor to a voltage source that meets the specifications, the sensor starts and initially shows the initialization "SICK PAC50-LT" and the corresponding firmware version "FWv x.xx" on the display. It then immediately switches to Leakage Tester mode. The display indicates the system pressure currently applied  $p_0$  as well as "Wait" and "User" in the bottom two lines. Everything is displayed in green here. By pressing the  $\bigcirc$  pushbutton in the middle for slightly longer (> 200 ms), the measurement starts with the preset parameters.
The factory setting is:

- p<sub>1</sub> = 0.6 bar
- $p_2 = 0.4$  bar
- t<sub>out</sub> = 30 seconds
- PVOL = 0.0 liters
- Q<sub>A</sub> = dT

Alternatively, the measurement can be started via a pulse from a control. Here, the pulse is transmitted to the sensor as an input signal via Q1.

# 4.3.3 Changing the parameters in LT mode

Pressing the  $\square$  pushbutton for longer (> 2 seconds) takes you to the LTP1 setting. To change this,  $\bigcirc$  must be pressed. The value can be changed using  $\square$  or  $\square$ . To apply the desired value,  $\bigcirc$  must be pressed again. Pressing the  $\square$  pushbutton takes you to the LTP2 setting, which follows the same procedure as LTP1.  $\square$  and  $\bigcirc$  can then be pressed to define the value for the measurement duration TOUT (in seconds from 0.1 to 9.999) using  $\square$  or  $\square$  and apply it using  $\bigcirc$ .

In the next menu step, which is again accessed using  $\overline{\mathbf{v}}$ , the volume of the system or section to be measured can be set (if known to the user) by first pressing  $\widehat{\mathbf{v}}$  and then the  $\overline{\mathbf{A}}$  or  $\overline{\mathbf{v}}$  pushbutton. If the volume is entered, the user is shown information on the leakage rate in L/min on the display at the end of the measurement.

In the next step, the menu item SET AMODE is accessed by pressing the  $\blacksquare$  pushbutton again. By pressing  $\textcircled$  and then  $\blacktriangle$  or  $\bigtriangledown$ , you can select whether the analog output is to be used to transmit the value for dT or dP. As the last step, pressing  $\blacksquare$  takes you to the menu item STOP LT. Using  $\textcircled$  for confirmation and  $\blacktriangle$  or  $\bigtriangledown$  for selection, the user can decide here whether they want to use the sensor in LT mode (selection "NO") or as a pressure switch (selection "YES"). The corresponding selection is confirmed using  $\textcircled$ . By pressing the  $\blacksquare$  pushbutton again, the sensor is then switched to measurement standby in the relevant mode.

#### 4.3.4 Changing the parameters in LT mode

The sensor is in measurement standby (see 4.3.2), the information shown on the display appears in green and the measurement is either started manually using the pushbutton or via the PLC using Q1 as a switching input. The current measured value is always shown in the top part of the display. The following scenarios may occur during the measurement:

# 4.3.4.1 System supply pressure $p_0 < (pressure)$ threshold $p_1$ or $p_2$

After the measurement starts, the sensor switches directly to an error mode if  $p_0$  is not at least 0.02 bar greater than the upper threshold  $p_1$ . The display turns red. In the display, "WARN" appears underneath the current measured value, and "p<p\_1" and the value for  $p_1$  (e.g., "0.60") or "p<p\_2" and the value for  $p_2$  appear in the bottom line.

The message must be acknowledged by pressing igodot in order to set the sensor back to measurement standby.

# 4.3.4.2 Supply pressure $p_0 > p_1$ and $t_{out}$ reached before undershooting of $p_1$

Timer A starts once the measurement does. The upper threshold  $p_1$  is not reached by the time tout is reached. During the measurement, "TimA" appears in the top status line together with the corresponding time value in seconds, and "P>P<sub>1</sub>" appears in the bottom status line together with the value for P1, e.g., "0.60". The measurement stops once the time value for  $t_{out}$  has been reached. "DONE" appears in the top status line to indicate that the measurement has been completed. In the bottom status line, the values for dP (pressure difference between  $p_0$  and the current pressure upon reaching  $t_{out}$ ), dT (corresponds to tout in this case) and the value for QL (absolute value if a volume has been specified or "----QL" if vol = 0 has been retained) appear alternately.

The message must be acknowledged by pressing 2 in order to set the sensor back to measurement standby.

4.3.4.3 Supply pressure  $p_0 > p_1$  and undershooting of  $p_1$  before  $t_{out}$ 

If the upper pressure value  $P_1$  is undershot after the measurement starts, the measurement of dT starts. "MEAS" will then appear in the top status line. In the bottom line, the values for dP (pressure difference between p0 and the current pressure), for dT (time period in seconds since  $p_1$  was passed) and QL appear alternately. Once tout has lapsed, "DONE" appears in the top status line and the result of dP, dT and QL appears alternately in the bottom status line.

The message must be acknowledged by pressing 🔂 in order to set the sensor back to measurement standby.

4.3.4.4 Supply pressure  $p_0 > p_1$  and undershooting of  $p_1$  and  $p_2$  before  $t_{out}$ 

If the upper pressure value  $P_1$  is undershot after the measurement starts, the measurement of dT starts. "MEAS" will then appear in the top status line. In the bottom line, the values for dP (pressure difference between p1 and p2), for dT (time period in seconds since  $p_1$  was passed up to reaching  $p_2$ ) and QL appear alternately. When the lower (pressure) threshold  $P_2$  has been undershot, the color of the display changes from green to red (to indicate that there is a leakage). "DONE" is displayed in the top status line and the result of dP, dT and QL is displayed alternately in the bottom status line.

The message must be acknowledged by pressing P in order to set the sensor back to measurement standby.

▲▼ ⋺

#### PAC50

### 4.4 Display with color switching

The PAC50 has a backlit LCD display. The display is divided into different areas (see Figure 6 and Table 2).



Figure 7: Display areas

|                  | Display areas                      |                                                                |                             |                                       |                                       |  |
|------------------|------------------------------------|----------------------------------------------------------------|-----------------------------|---------------------------------------|---------------------------------------|--|
|                  | А                                  | В                                                              | C1/C2                       | D1/D2                                 | E1 / E2                               |  |
| Display mode     | Display of the applied pressure    | Key symbol if the<br>keypad is locked,<br>unit of pressure set | Switching thresholds set    | Output state for switching output 1/2 | Set value for switching thresholds    |  |
| Programming mode | Value of the selected<br>parameter | Selected parameter                                             | Additional infor-<br>mation | Output state for switching output 1/2 | Set value for<br>switching thresholds |  |

Table 2: Indicators in display areas

|              | Display areas                   |                                                                  |                                                        |       |         |  |
|--------------|---------------------------------|------------------------------------------------------------------|--------------------------------------------------------|-------|---------|--|
|              | Α                               | В                                                                | C1/C2                                                  | D1/D2 | E1 / E2 |  |
| Display mode | Display of the applied pressure | Key symbol (if the<br>keypad is locked),<br>unit of pressure set | Display of measure-<br>ment standby<br>("WAIT"/"USER") |       |         |  |

| Measuring mode   | Display of the applied pressure | Set pressure unit  | C1: Status of the<br>leakage measure-<br>ment (Wait User,<br>MEAS DONE) or<br>TimA until P1 is<br>reached, error<br>message ("WARN")<br>if the supply pres-<br>sure is not sufficient,<br>"DONE" once the<br>measurement has<br>been completed<br>(without errors)<br>C2: QL, dT, dP<br>alternately<br>or P>P1 until P1 is<br>reached or P <p2<br>until P2 is reached</p2<br> | D2: "Leakage<br>measurement<br>activation" status | E1: Timer in seconds<br>until P1 is reached<br>E2: Measured<br>values for QL, dT, dP |
|------------------|---------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------|
| Programming mode | Value of the selected parameter | Selected parameter |                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                      |

Table 3: Indicators in display areas for LT mode

Once the set switching points (SP1/2, RP1/2, FH1/2, or FL1/2) have been reached, the color of the respective switching point display areas changes between green and red.

The color change can be set using the "DISC" function:

- Red if the switching point is not reached or undershot, or if the applied pressure is within the defined window, and green if the switching point is exceeded or if the applied pressure is outside the window ("DISC" function: OD)
- Red if the switching point is exceeded or if the applied pressure is outside the defined window, and green if the switching point is not reached or undershot, or if the applied pressure is within the window ("DISC" function: DU)
- Always red (no color change, "DISC" function: RED)

- Always green (no color change, "DISC" function: GRN)
- Energy-saving mode. The display is switched off. The display is activated for 10 seconds when one of the pushbuttons is pressed ("DISC" function: OFF)

#### 4.5 IO-Link (if available)

A description of the IO-Link functions for the PAC50 and the accompanying IODD file (IO-Link Device Description file) can be downloaded from www.sick.com.

#### 4.6 Protection of the environment

The PAC50 has been designed to minimize its impact on the environment. It consumes only a minimum of energy. Always act in an environmentally responsible manner at work. For this reason, please note the following information on disposal. The PAC50 display can be switched off (DISC function). to reduce current consumption by the device.

#### 4.6.1 Disposal after final decommissioning

Always dispose of unusable or irreparable devices in accordance with the applicable waste disposal regulations specific to your country. SICK AG does not take back devices that are unusable or irreparable.

# 5 Installation/Mechanical connection



Ensure that there is no mechanical load on the pressure switch during installation. Please observe the ambient conditions specified in Section 9 (Technical data). The pressure transmitter must not be exposed to condensation.

#### 5.1 Installation on a mounting rail

The PAC50 pressure switch has an integrated fixing mechanism for installing on a mounting rail according to DIN EN 60715 - 35 mm x 15 mm / 7.5 mm.

- To install the PAC50, position the lower fixing guide on the mounting rail (see Figure 7 ①) and tilt the PAC50 up until it locks into place (see Figure 7 ② and ③).
- To remove the PAC50 from the mounting rail, pull the fixing clip down and tilt the PAC50 up and away from the mounting rail.



Figure 8: Installation on a mounting rail

#### 5.2 Installation with a switch panel mounting set

## 5.2.1 Standard mounting set - part 2069200

To install in a switch panel, use the switch panel mounting set, which is available as an accessory (see Figure 8). The maximum switch panel thickness is 5 mm. Figure 9 shows the dimensions of the cut-out section in the switch panel.



Figure 9: Switch panel mounting set

5.2.2 Rugged mounting set for challenging applications (shock/vibration) – part 2099916 To install in a switch panel, use the switch panel mounting set for rugged applications, which is available as an accessory (see Figure 10). The maximum switch panel thickness is 5 mm. Figure 11 shows the dimensions of the cut-out section in the switch panel.



Figure 10: Switch panel mounting set, rugged



- Insert the switch panel mounting frame into the switch panel from the outside, making sure that the openings for the fixing rails are facing upward [1].
  - From above, push the fixing rails into the switch panel mounting frame as far as possible [2].
- Carefully screw in the four pre-fitted, short fixing screws for the fixing rails as far as possible (max. 8 Ncm) [3].
- Insert the pressure switch into the switch panel mounting frame support from behind [4].
- Secure the fixing element in the mounting rail support for the pressure switch [5].
- Carefully screw the fixing element and the fixing rails together using the two long fixing screws (max. 8 Ncm) [6].
- Carefully retighten all the screws (max. 8 Ncm).

# 5.3 Installation with a wall mounting set

Secure the fixing element in the mounting rail support for the pressure switch, see Figure 10.



Figure 12: Installation with a wall mounting set

Figure 11: Opening in the switch panel

#### 5.4 Pressure connection via the G 1/4 female thread (Figure 13)

Be sure to use a suitable seal. Do not install the seal using tools or pointed/sharp objects. Ensure that the sealing surfaces on the device and the measuring point are clean and intact. Only use straight (not tapered) G  $\frac{1}{4}$  male threads with the PAC50. Only use screw connections that seal the external flange axially and that have a maximum screw-in depth of 9 mm. Using incorrect connection threads may damage the device. Avoid tilting the thread during insertion. You should maintain a tightening torque of 1.5 Nm ± 0.5 Nm. This value must not be exceeded. The unused G  $\frac{1}{4}$  female thread must be sealed using the supplied blind plug. Insert the seal for the blind plug and tighten to 1 Nm ± 0.3 Nm.



MA = 1 Nm +/- 0,3 Nm

Figure 13: Pressure connection via the G 1/4 female thread

# 5.5 Pressure connection via the plug connection for the pneumatic hose (push-in fitting, Figure 14)

The plug connection is suitable for pneumatic hoses with a 4 mm outer diameter. Once inserted, check that the pneumatic hose has been positioned correctly before loading the pressure switch with pressure. The rear G <sup>1</sup>/<sub>4</sub> female thread must be sealed using the supplied blind plug. Insert the seal for the blind plug and tighten the blind plug using a hex key (6 mm) to a tightening torque of 1 Nm  $\pm$  0.3 Nm. To remove the pneumatic hose, press against the gray plastic ring on the plug connection and carefully take out the pneumatic hose.



Figure 14: Plug connection for 4 mm pneumatic hose (push-in fitting, PIF)

# 5.6 Process connection via 1/4 NPT female thread (Figure 15)

All variants with type code PAC50-xNx feature a process connection with a conical  $\frac{1}{4}$ " NPT female thread on the underside of the device. This means that the alternative process connection with a G  $\frac{1}{4}$ " parallel thread on the back cannot be used.

The G  $\frac{1}{4}$ " blind plug from the rear process connection is not compatible with the conical  $\frac{1}{4}$ " NPT female thread. That means it must not be used to close the  $\frac{1}{4}$ " NPT process connection located on the underside of the housing. This can lead to the destruction of the sensor. The screw-in depth for the  $\frac{1}{4}$ " NPT process connection on the underside is max. 9 mm.



Figure 15: 1/4" NPT female thread

# 6 Electrical connection

The electrical connection is established using a round connector M12 x 1. Table 3, Figure 13, Table 4, and Figure 14 display the pin assignments for the various device versions/existing output signals.



# CAUTION!

Please observe the information regarding the electrical properties of the pressure switch in Section 9 (Technical data).

| Output signals                | Type designation | Electrical connection | Pin assignment                           |
|-------------------------------|------------------|-----------------------|------------------------------------------|
| 2 x digital                   | PAC50-xxA        | M12 x 1, 4-pin        | $L^{+} = 1, M = 3, Q_{1} = 4, Q_{2} = 2$ |
| 1 x digital + analog          | PAC50-xxB        | M12 x 1, 4-pin        | $L^{+} = 1, M = 3, Q_{1} = 4, Q_{A} = 2$ |
| 1 x IO-Link/digital + digital | PAC50-xxD        | M12 x 1, 4-pin        | $L^{+} = 1, M = 3, C/Q_1 = 4, Q_2 = 2$   |

Table 4: Pin assignment according to output signal, 4-pin



Figure 16: Pin assignment M12 x 1, 4-pin

| Output signals                            | Type designation | Electrical connection | Pin assignment                                                                          |
|-------------------------------------------|------------------|-----------------------|-----------------------------------------------------------------------------------------|
| 2 x digital + analog                      | PAC50-xxC        | M12 x 1, 5-pin        | $L^{+} = 1, M = 3, Q_1 = 4, Q_2 = 2, Q_A = 5$                                           |
| 1 x IO-Link/digital + digital<br>+ analog | PAC50-xxF        | M12 x 1, 5-pin        | L <sup>+</sup> = 1, M = 3, C/Q <sub>1</sub> = 4, Q <sub>2</sub> = 2, Q <sub>A</sub> = 5 |

Table 5: Pin assignment according to output signal, 5-pin





Figure 17: Pin assignment M12 x 1, 5-pin

The Leakage Tester is a variant (PAC50-FGG) that is coded in the same way as the 5-pin male connector for PAC50-xxF in terms of the output signals and PIN assignment.

| Part number | Device type | Measuring<br>range | Device mode    | Output signal                                               | Input signal                          |
|-------------|-------------|--------------------|----------------|-------------------------------------------------------------|---------------------------------------|
| 1098276     | PAC50-FGG   | -1+10 bar          | Standard mode  | PNP/NPN/push-pull<br>+ PNP/NPN/push-pull<br>+420 mA / 010 V |                                       |
|             |             |                    | Leakage Tester | PNP/NPN/push-pull<br>+420 mA / 010 V                        | Digital switching input PNP<br>(C/Q1) |

Table 6: Leakage Tester output signals

# 7 Operation and parameter settings

### 7.1 Initialization

Once the voltage supply has been connected, all segments on the display light up for 2 seconds in the primary color, then 2 seconds in the warning color to check all segments are functioning correctly. The following indications are then displayed for 2 seconds:

- Display area A: "SICK"
- Display area B: "PAC50" or "PAC50-LT" with variant PAC50-FGG
- Display areas C2 and E2: "Firmware version"

The device then enters display mode.

# 7.2 In operation: Display mode

The measuring and switching functions are in operation.

The device has an energy-saving mode which switches off the display ("DISC" function). In energy-saving
mode (DISC: OFF), the display is briefly reactivated (10 seconds) when one of the pushbuttons is pressed.

# 7.3 Info mode

Pressing the  $\blacktriangle$  pushbutton for a longer period (> 3 seconds) displays the following parameters consecutively for 3 seconds each (see "Parameter info" in Section 2). The device then switches back to display mode:

- SP1/FH1 (settings for switching point 1 / upper window limit 1)
- RP1/FL1 (settings for reset point 1 / lower window limit 1)
- SP2/FH2 (settings for switching point 2 / upper window limit 2)
- RP2/FL2 (settings for reset point 2 / lower window limit 2)
- Analog output (electrical output signal in mA or V)
- LOW (minimum applied pressure value that has been stored since the last reset)
- HIGH (maximum applied pressure value that has been stored since the last reset)

The info mode can be aborted by simultaneously pressing the  $\blacksquare$  and  $\blacksquare$  pushbuttons or by pressing the  $\textcircled$  pushbutton in the middle.

#### 7.4 Programming mode

7.4.1 Setting the device parameters

To switch to programming mode, the  $\mathbf{V}$  pushbutton must be pressed for longer than 2 seconds. If the programming mode is inactive for a long period (> 15 seconds), the device automatically reverts back to display mode. The measuring and switching functions continue to run (in the background) while the device is in programming mode.

Selection:

- The parameter/menu item to be set should be selected first using the ▲ and ▼ pushbuttons. The note in display area B: "SET" is helpful in this regard.
- To select the parameter/menu item to be set, press the 🔁 pushbutton in the middle.

Making settings:

- The parameter value to be set is displayed in display area A. Display areas C1/2 and E1/2 display the existing parameter value settings.
- The parameter is set using the  $\blacksquare$  and  $\boxed{}$  pushbuttons and then confirmed with the pushbutton.
- The setting becomes active the moment a selected parameter value is confirmed by pressing the 会 pushbutton, even if the pressure switch is still in programming mode.

# 7.4.2 Menu structure, description of the parameters, and factory settings (Figure 14)



Subject to change without notice

| Value range                           | Factory settings |
|---------------------------------------|------------------|
| Min: LLR +0.2% of the range, max: ULR | ULR              |
| Min: LLR, max: ULR -0.2% of the range | ULR -10%         |
| Min: LLR +0.2% of the range, max: ULR | ULR              |
| Min: LLR. max: ULR -0.2% of the range | ULR -10%         |
|                                       |                  |
|                                       |                  |
| 0 50 s                                | 0 s              |
| HNO, HNC, FNO, FNC                    | HNO              |

| Î    |          |        | Description                                                                                                                                                                                                                                                                      |
|------|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |          | DADA   | Switching function, switching output 2                                                                                                                                                                                                                                           |
|      | 1        | PARA   | (if second switching output is available):<br>Hysteresis function, normally open contact: HNO<br>Hysteresis function, normally closed contact: HNC<br>Window function, normally closed contact: FNC<br>Window function, normally closed contact: FNC<br>Diagnostic function: DIA |
| ₽-N  | <b>→</b> | PARA   | Switching logic for switching outputs: PNP, NPN, or push-pull                                                                                                                                                                                                                    |
| 1    |          |        | (applies for both switching outputs, if second switching output is available. Q1 is always PNP for the IO-Link option)                                                                                                                                                           |
| OUA  | <b>→</b> | PARA   | (if analog output is available):                                                                                                                                                                                                                                                 |
|      |          |        | Output signal 420 mA: I<br>Inverted output signal 204 mA: IINV<br>Output signal: 010 V: U<br>Inverted output signal 100 V: UINV<br>Automated detection depending on applied load resistance<br>(non-inverted output signals): AUTO                                               |
|      | <b>→</b> | Unit   | Unit of pressure setting in the display                                                                                                                                                                                                                                          |
| 1    |          |        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                            |
| OSET | <b>→</b> | YES/NO | Zero offset correction, max. 5%                                                                                                                                                                                                                                                  |
| 1    |          |        |                                                                                                                                                                                                                                                                                  |
|      | -        | PARA   | Indication of switching points/window limits in display areas C<br>and E: SPRP<br>Indication of LOW/HIGH values in display areas C and E: LoHi                                                                                                                                   |
| DISU | <b>→</b> | Value  | Display update                                                                                                                                                                                                                                                                   |
| 1    |          |        |                                                                                                                                                                                                                                                                                  |
| DISR | <b>→</b> | YES/NO | Turns display indicator in the relevant display field upside down                                                                                                                                                                                                                |
| I    |          |        | electronically                                                                                                                                                                                                                                                                   |

| Value range                     | Factory settings |
|---------------------------------|------------------|
| HNO, HNC, FNO, FNC, DIA         | HNO              |
| PNP, NPN, P/P                   | PNP              |
| I, IINV, U, UINV, AUTO          | AUTO             |
| BAR, MPA, KPA, PSI, inHg        | BAR              |
|                                 | -                |
| SPRP, LoHi                      | SPRP             |
| 1/2/5/10 Display updates/second | 5/s              |
|                                 | NO               |



LLR: Lower limit of measuring range ULR: Upper limit of measuring range EF: Extended programming functions

| Value range               | Factory settings |
|---------------------------|------------------|
|                           |                  |
| OD, DU, RED, GRN, OFF     | OD               |
|                           |                  |
| No possibility of setting | LLR              |
| No possibility of actting |                  |
| No possibility of setting | ULR              |
|                           | -                |
|                           |                  |
|                           | Without          |
|                           |                  |
|                           |                  |

Without

## 7.4.3 PAC50-FGG menu structure (Leakage Tester)



| Value range                                          | Factory settings |
|------------------------------------------------------|------------------|
|                                                      |                  |
|                                                      |                  |
|                                                      |                  |
| -1.000.02 +0.02 +10,000 bar (MPa,<br>KPa, PSI, inHg) | 0.6 bar          |
|                                                      |                  |
| -1.000.02 +0.02 +10,000 bar (MPa,<br>KPa, PSI, inHg) | 0.4 bar          |
|                                                      |                  |
| 1.0 9,999 seconds                                    | 30 seconds       |
|                                                      |                  |
| 0.0 liters                                           | 0.0 liters       |
|                                                      |                  |
| dp or dT for analog port                             | dT               |
|                                                      |                  |
| YES or NO for Leakage Tester mode                    | LT mode          |

# 8 Errors

#### 8.1 Errors and warning messages (indicator flashes in display segments A and B, Table 5)

| Display A | Display B              | Status  | Description                                                                                                                                                                                          | Action required                                                                              |
|-----------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| OL        | OVERPRESS              | Error   | Applied pressure > upper limit of measuring range                                                                                                                                                    | Set pressure to within measuring range                                                       |
| UL        | UNDERPRES              | Error   | Applied pressure < lower limit of measuring range                                                                                                                                                    | Set pressure to within measuring range                                                       |
| ERR1      | GEN.ERROR              | Error   | General error                                                                                                                                                                                        | Contact SICK                                                                                 |
| ERR2      | SHORTOUT1<br>SHORTOUT2 | Error   | Short-circuit at one of the two outputs                                                                                                                                                              | Remove the short-circuit                                                                     |
| ERR3      | OVERVOLTG              | Error   | Applied supply voltage > 30 V DC                                                                                                                                                                     | Make the correct setting for the supply voltage                                              |
| ERR4      | LOW VOLTG              | Error   | Applied supply voltage < 17 V DC                                                                                                                                                                     | Make the correct setting for the supply voltage                                              |
| ATT1      | SHIFT RP1<br>SHIFT RP2 | Warning | Switching point setting made by the operator below<br>the reset point that is set. The reset point is auto-<br>matically set below the new switching point with the<br>smallest possible hysteresis. | Acknowledge by pressing the<br><enter> pushbutton</enter>                                    |
| ATT2      | ADJ>LIMIT              | Warning | Displayed if the applied pressure during zero<br>balancing lies outside the permitted limit of 5% of<br>the range                                                                                    | Acknowledge by pressing the<br><enter> pushbutton</enter>                                    |
| LOCK      | KEYLOCKED              | Warning | Displayed if an attempt is made to access the<br>programming mode while the input lock is active                                                                                                     | Enter the password or unlock<br>via IO-Link if parameter entry<br>has been locked by IO-Link |

Table 7: Errors and warning messages

#### PAC50-FGG (Leakage Tester)

After the measurement starts, the sensor switches directly to an error mode if  $p_0$  is not at least 0.02 bar greater than the upper threshold  $p_1$ . The display turns red. In the display, "WARN" (display position C1) appears underneath the current measured value, and "p< $p_1$ " (display position C2) and the value for p1 (e.g., "0.60" display position E2) or "p< $p_2$ " and the value for  $p_2$  appear in the bottom line. The message must be acknowledged by pressing  $\bigcirc$  in order to set the sensor back to measurement standby.

#### 8.2 Behavior of the digital output in the event of an error

Switching output 2 (if available) can be configured as a diagnostic output ("OU2" function). Table 8 displays the defined output states in the event of an error.

| Indicator<br>on display<br>(area A) | Function                                                                 | Digital outputs          |                      |                          | Diagnostic output:<br>Complementary switching |                      |                          |
|-------------------------------------|--------------------------------------------------------------------------|--------------------------|----------------------|--------------------------|-----------------------------------------------|----------------------|--------------------------|
|                                     |                                                                          | PNP mode                 | NPN mode             | Push-pull<br>mode        | PNP mode                                      | NPN mode             | Push-pull<br>mode        |
| OL                                  | Excess pressure: Applied<br>pressure > upper limit of<br>measuring range | Normal operation         |                      |                          |                                               |                      | Low                      |
| UL                                  | Underpressure: Applied<br>pressure < lower limit of<br>measuring range   |                          |                      |                          |                                               | NPN active           |                          |
| ERR1                                | General error                                                            | Low<br>Pull-down<br>only | High<br>Pull-up only | Low<br>NPN pull-<br>down | Low<br>Pull-down<br>only                      | High<br>Pull-up only |                          |
| ERR2                                | Short-circuit at one of the two outputs                                  |                          |                      |                          |                                               |                      | Low<br>NPN pull-<br>down |
| ERR3                                | Applied supply voltage<br>> 30 V DC                                      |                          |                      |                          |                                               |                      |                          |
| ERR4                                | Applied supply voltage<br>< 17 V DC                                      |                          |                      |                          |                                               |                      |                          |

Table 8: Behavior of the digital outputs in the event of an error

## 8.3 Behavior of the analog output in the event of an error



Figure 18: Behavior of the analog output in the event of an error (1)

Current output according to the applicable range as per NAMUR NE43: max. output current 20.5 mA/min. output current 3.8 mA. The transition between the linear range LLR...ULR...OL can be unsteady in the range between ULR and OL. (The same applies to UL...LLR.)



Figure 19: Behavior of the analog output in the event of an error (2) Significant "overrunning" of the output voltage of 10 V to increase the reliability of the system in the case of stray voltage.

# 9 Technical data

#### 9.1 Features

| Medium                 | Dry compressed air                                                                                                                                                                                                          |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compressed air quality | According to ISO 8573-1:2010<br>Max. particle size: $\leq$ 40 µm<br>Oil content: 0–40 mg/m <sup>3</sup><br>The pressure dew point must be at least 15 °C below the ambient and medium<br>temperature and must be max. 3 °C. |
| Zero balancing         | Max. 5% of the range                                                                                                                                                                                                        |
| Measuring range        | -1 bar 0 bar; -1 bar +1 bar; 0 bar +6 bar; 0 bar +10 bar; -1 10 bar                                                                                                                                                         |
| Process temperature    | 0 °C 60 °C                                                                                                                                                                                                                  |
| Switching outputs      | 1 or 2 transistor switching outputs depending on the variant                                                                                                                                                                |
|                        | PNP/NPN/push-pull can be set (in variant with IO-Link: Switching output 1: Option of switching between IO-Link/PNP, and switching output 2: Between PNP/NPN/push-pull)                                                      |
|                        | Function: Normally open/normally closed contact, window and hysteresis function freely adjustable                                                                                                                           |
|                        | Switching voltage: Supply voltage L <sup>+</sup> -2 V [V DC]                                                                                                                                                                |
|                        | Max. switching current per switching output: 100 mA                                                                                                                                                                         |
|                        | Variants with IO-Link: IO-Link version 1.1                                                                                                                                                                                  |
|                        | Switching delay: 0 s 50 s (programmable)                                                                                                                                                                                    |
|                        | Switching time $\leq 5 \text{ ms}$                                                                                                                                                                                          |
| Diagnostic output      | For variants with 2 switching outputs: Switching output 2 can be used as a diagnostic output. In the event of an error: See Table $8.2$                                                                                     |

| Analog output signal | Optional, 4 mA 20 mA / 0 V 10 V. Automated switchover depending on the connected load, or permanently adjustable. Invertible output signals: 20 mA 4 mA / 10 V 0 V |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Load resistance $R_A$ with current output < 600 ohm<br>Load resistance $R_A$ with voltage output > 3 kohm                                                          |
| Display              | LCD with LED backlighting (green/red), can be rotated electronically by $180^\circ$                                                                                |
|                      | Pressure display: 4 digits, 16 segments                                                                                                                            |
|                      | Option of switching between pressure units in the display: bar, MPa, kPa, psi, and inHg $% \left( {{\left( {{{\rm{D}}_{\rm{T}}} \right)}_{\rm{T}}} \right)$        |
|                      | Update: 1,000, 500, 200, and 100 ms (programmable)                                                                                                                 |
|                      |                                                                                                                                                                    |

Table 9: Features

#### 9.2 Performance

| Non-linearity           | $\leq \pm$ 0.5% of the range (Best Fit Straight Line, BFSL) as per IEC 61298-2                                                                                                                                                  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accuracy                | $\leq \pm 1.5\%$ of the range<br>$\leq \pm 2.0\%$ of the range incl. temperature error<br>(inclusive of non-linearity, hysteresis, zero-point and full-scale error (corresponds to<br>error of measurement as per IEC 61298-2)) |
| Non-repeatability       | $\leq \pm 0.2\%$ of the range                                                                                                                                                                                                   |
| Rated temperature range | 10 °C +60 °C                                                                                                                                                                                                                    |

Table 10: Performance

## 9.3 Mechanics/Electronics

| Process connection  | 2 x G ¼ <sup>1)</sup><br>PIF 4 mm + G ¼ <sup>2)</sup><br>¼ NPT <sup>3)</sup>                                                                      |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Connection          | Round connector M12 x 1, 4-pin with 1 switching output + analog output<br>Round connector M12 x 1, 5-pin with 2 switching outputs + analog output |
| Supply voltage 4)   | 17 V DC 30 V DC                                                                                                                                   |
| Current consumption | Max. 40 mA at L <sup>+</sup> = 24 V DC                                                                                                            |
| Initialization time | 300 ms                                                                                                                                            |
| Housing material    | Housing: Polycarbonate; keypad: TPE; mounting rail fixing mechanism: POM; seals: NBR                                                              |
| Electrical safety   | Protection class: III                                                                                                                             |
|                     | Overvoltage protection: 32 V DC                                                                                                                   |
|                     | Short-circuit resistance: $\textbf{Q}_{_{A}},\textbf{Q}_{_{1}},\textbf{Q}_{_{2}}$ towards M and $L^{*}$                                           |
|                     | Reverse polarity protection: $L^{\ast}$ towards $M$                                                                                               |
| CE conformity       | EMC Directive: 2004/108 / EC, EN 61326-2-3                                                                                                        |
| RoHS certificate    | Yes                                                                                                                                               |
| cULus certificate   | Yes                                                                                                                                               |

<sup>1)</sup> Underside: G <sup>1</sup>/<sub>4</sub> female thread, rear: G <sup>1</sup>/<sub>4</sub> female thread, both in acc. with DIN ISO 16030

<sup>2)</sup> Underside: push-in fitting for 4 mm pneumatic hose, rear: G ¼ female thread in acc. with DIN ISO 16030

3) Underside: 1/4" NPT female thread

<sup>4)</sup> For the voltage supply, use an energy-limited circuit as per UL61010-1 3rd Ed., Section 9.4

| Operating Instructions | Technical data PAC                                                                       | :50 |
|------------------------|------------------------------------------------------------------------------------------|-----|
| Enclosure rating       | IP 65 and IP 67 according to IEC 60529, when plugged in with a suitable mating connector |     |
| Weight                 | Approx. 40 g                                                                             |     |

Table 11: Mechanics/electronics

# 9.4 Ambient data

| Ambient temperature | 0 °C +60 °C                                                                             |
|---------------------|-----------------------------------------------------------------------------------------|
| Storage temperature | -20 °C +80 °C                                                                           |
| Relative humidity   | < 90%                                                                                   |
| Impact load         | Max. 30 g, xyz, according to DIN EN 60068-2-27 (11 ms, mechanical shock)                |
| Vibration load      | Max. 5 g, xyz, according to IEC 60068-2-6 (10 $\dots$ 150 Hz, vibration with resonance) |

Table 12: Ambient data

#### Technical data

#### **Dimensional drawings**

Dimensions in mm



Figure 20: PAC50 with process connection G 1/4" / 1/4" NPT





Figure 21: PAC50 with push-in fitting
## Dimensional drawings for accessories





Figure 23: Wall bracket mounting



Figure 22: Installation in switch panel

## 10 Device maintenance and cleaning

- The device is maintenance-free
- Before cleaning, separate the pressure switch from the pressure supply and the voltage supply in the normal way
- · Use only a slightly damp cloth for cleaning (water and soap solution)
- Do not allow electrical connections to come into contact with liquids
- Do not use any aggressive cleaning agents such as industrial alcohol, benzine, diluting agents, etc.

## 11 Returns

When returning the device, it is crucial to note the following:

- All devices delivered to SICK must be free from hazardous substances (acids, lyes, solutions, etc.).
- The device must be returned in its original packaging or packaging that is suitable for transport purposes
- · A signed and completed non-risk declaration form must be included with the device
- · The non-risk declaration form can be found at www.sick.de

# List of figures and tables

| Figure 1: Minimum permissible period T with maximum pressure fluctuation ΔpTransport, packaging,       |     |
|--------------------------------------------------------------------------------------------------------|-----|
| and storage                                                                                            | 65  |
| Figure 2: Hysteresis function in the event of excess pressure                                          | 67  |
| Figure 3: Hysteresis function in the event of underpressure                                            | 68  |
| Figure 4: Window function                                                                              | 68  |
| Figure 5: Delay times                                                                                  | 69  |
| Figure 6: Leakage measurement schematic diagram                                                        | 72  |
| Figure 7: Display areas                                                                                |     |
| Figure 8: Installation on a mounting rail                                                              | 79  |
| Figure 9: Switch panel mounting set                                                                    | 80  |
| Figure 10: Switch panel mounting set, rugged                                                           |     |
| Figure 11: Opening in the switch panel                                                                 |     |
| Figure 12: Installation with a wall mounting set                                                       |     |
| Figure 13: Pressure connection via the G 1/4 female thread                                             |     |
| Figure 14: Plug connection for 4 mm pneumatic hose (push-in fitting, PIF)                              | 84  |
| Figure 15: 1/4" NPT female thread                                                                      |     |
| Figure 16: Pin assignment M12 x 1, 4-pin                                                               |     |
| Figure 17: Pin assignment M12 x 1, 5-pin                                                               |     |
| Figure 18: Behavior of the analog output in the event of an error (1)                                  | 101 |
| Figure 19: Behavior of the analog output in the event of an error (2) Significant "overrunning" of the |     |
| output voltage of 10 V to increase the reliability of the system in the case of stray voltage          | 102 |
| Figure 20: PAC50 with process connection G 1/4" / 1/4" NPT                                             | 108 |
| Figure 21: PAC50 with push-in fitting                                                                  | 108 |
| Figure 22: Installation in switch panel                                                                | 109 |
| Figure 23: Wall bracket mounting                                                                       | 109 |

| Table 1: Pushbutton functions                                      | .70 |
|--------------------------------------------------------------------|-----|
| Table 2: Indicators in display areas                               | .76 |
| Table 3: Indicators in display areas for LT mode                   | .77 |
| Table 4: Pin assignment according to output signal, 4-pin          | .86 |
| Table 5: Pin assignment according to output signal, 5-pin          | .86 |
| Table 6: Leakage Tester output signals                             | .87 |
| Table 7: Errors and warning messages                               | .98 |
| Table 8: Behavior of the digital outputs in the event of an error1 | 100 |
| Table 9: Features                                                  | 104 |
| Table 10: Performance                                              | 104 |
| Table 11: Mechanics/electronics1                                   | 106 |
| Table 12: Ambient data1                                            | 106 |

Cet ouvrage est protégé par les droits d'auteur. Les droits établis restent dévolus à la société SICK AG. La reproduction de l'ouvrage, même partielle, n'est autorisée que dans le cadre légal prévu par la loi sur les droits d'auteur. Toute modification ou tout abrègement de l'ouvrage est interdit sans l'accord écrit exprès de la société SICK AG.

# Sommaire

| 1 À propos de ce document                    |  |
|----------------------------------------------|--|
| 2 Sûreté                                     |  |
| 3 Transport, emballage et stockage           |  |
| 4 Description du produit                     |  |
| 5 Installation/raccordement mécanique        |  |
| 6 Raccordement électrique                    |  |
| 7 Fonctionnement et réglage des paramètres   |  |
| 8 Erreur                                     |  |
| 9 Caractéristiques techniques                |  |
| 10 Maintenance et nettoyage de l'appareil    |  |
| 11 Retour                                    |  |
| Répertoire des illustrations et des tableaux |  |

## 1 À propos de ce document

Veuillez lire ce chapitre consciencieusement avant de travailler avec le PAC50. Sous réserve de modifications techniques.

#### 1.1 Fonction de ce document

Cette notice d'instruction, destinée au personnel technique, constitue un guide de montage fiable, d'installation électrique, de configuration et de mise en service du capteur de pression PAC50. Elle fait partie intégrante du produit et doit être conservée à proximité immédiate de l'appareil afin que le personnel puisse y accéder à tout moment.

#### **Conformités et certificats**

Vous trouverez les déclarations de conformité, les certificats et la notice d'instructions actuelle du produit sur Auf www.sick.com . Pour cela, saisir la référence du produit dans le champ de recherche (référence : voir le numéro de la plaque signalétique dans le champ « P/N » ou « ldent. no. »). Informations supplémentaires :

- Fiches techniques spécifiques au modèle des variantes d'appareil avec caractéristiques techniques, plans cotés et diagrammes
- · Plans cotés et modèles CAO 3D cotés disponibles dans différents formats électroniques
- autres publications en relation avec les capteurs décrits ici (p. ex. IO-Link)
- Publications concernant les accessoires

## 1.2 Abréviations

| L⁺                     | Raccordement d'alimentation positive                     | SP1                              | Point de commutation 1                                 |
|------------------------|----------------------------------------------------------|----------------------------------|--------------------------------------------------------|
| М                      | Raccordement d'alimentation négative                     | SP2                              | Point de commutation 2                                 |
| Q <sub>1</sub>         | Sortie de commutation 1                                  | RP1                              | Point de commutation de retour 1                       |
| Q <sub>2</sub>         | Sortie de commutation 2                                  | RP2                              | Point de commutation de retour 2                       |
| MBA                    | Début de la plage de mesure                              | FH1                              | Limite de fenêtre supérieure 1                         |
| MBE                    | Fin de la plage de mesure                                | FL1                              | Limite de fenêtre inférieure 1                         |
| C/Q <sub>1</sub>       | Avec IO-Link : communication/<br>sortie de commutation 1 | FH2                              | Limite de fenêtre supérieure 2                         |
| Q <sub>A</sub>         | Sortie analogique                                        | FL2                              | Limite de fenêtre inférieure 2                         |
| LT                     | Leakage Tester                                           | p <sub>1</sub> /LTP1             | valeur de pression supérieure/seuil<br>mesure de fuite |
| p <sub>2</sub> /LTP2   | valeur de pression inférieure/seuil mesure de fuite      | $\rm p_{_0} / \rm p_{_{supply}}$ | Pression système/pression d'alimen-<br>tation          |
| t <sub>out</sub> /TOUT | Limite de temps/période mesure de fuite                  | dT                               | Valeur de temps/durée mesure de<br>fuite               |
| dP                     | Différence de pression constatée de la mesure de fuite   | QL                               | Taux de fuite                                          |

| PVOL | Volume de l'installation/des conduites<br>de pression à mesurer  | AMODE     | Mode sortie analogique (dP ou dT)                                                            |
|------|------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------|
| TimA | Minuterie A (durée du démarrage de la mesure à l'atteinte de p1) | MEAS      | Mesure de fuite en cours                                                                     |
| DONE | Mesure de fuite terminée                                         | Wait User | Capteur prêt pour le démarrage de la mesure de fuite (en attente de la commande utilisateur) |

#### 1.3 Symboles utilisés



### AVERTISSEMENT !

... attire votre attention sur des dangers concrets ou potentiels. Ceci est pour vous protéger contre les accidents. Lisez et suivez attentivement les avertissements !

# 2 Sûreté



### AVERTISSEMENT !

Le non-respect des consignes de sûreté et des avertissements suivants met en danger les personnes et expose le matériel à des dommages.

#### 2.1 Personnel autorisé

Le personnel qualifié, du fait de sa spécialisation, de son savoir en technique de mesure et de régulation, de son expérience ainsi que de ses connaissances des prescriptions nationales, des normes et directives en vigueur, est en mesure de réaliser les travaux décrits et d'identifier par lui-même les risques éventuels.

#### 2.2 Utilisation conforme

Le PAC50 réunit un capteur de pression électronique destiné au contrôle de la pression dans l'air comprimé. Il ne peut être utilisé que par un personnel autorisé et uniquement dans un environnement industriel. Toute autre utilisation ou modification du PAC50 annule la garantie de SICK AG. Le PAC50 doit être utilisé uniquement dans les conditions ambiantes et de processus spécifiées dans cette notice d'instruction.

#### 2.3 Consignes de sûreté et mesures de protection générales

Pour être utilisé, l'état de l'appareil doit être irréprochable.

2.3.1 Travaux d'installation électrique

- · L'installation électrique ne doit être exécutée que par un personnel autorisé.
- Établir ou couper les liaisons électriques entre le PAC50 et d'autres appareils uniquement s'ils sont hors tension.
- · Faire fonctionner le PAC50 uniquement dans la plage de tension précisée.
- Exploiter le PAC50 uniquement avec les charges définies dans cette notice d'instruction.
- Ne pas utiliser de câble endommagé (risque de court-circuit, entrée d'eau via le câble/connecteur mâle).

- Choisir et réaliser des sections de conducteurs ainsi que leur blindage correct en fonction des normes en vigueur.
- S'assurer du montage correct/de la bonne tenue du câble de raccordement.
- Ne pas ouvrir le boîtier.
- \* Lors de travaux sur des installations électriques, observer les prescriptions de sûreté habituelles.
- 2.3.2 Raccordement mécanique, connecteur de pression
- · Le montage ne doit être exécuté que par un personnel autorisé.
- Faire fonctionner le PAC50 uniquement dans la plage de pression précisée.
- Utiliser le PAC50 uniquement avec les accessoires fournis.
- · Ne pas ouvrir, modifier ou agrandir le produit.
- S'assurer du montage correct/de la bonne tenue des connecteur de pression/des tuyaux.
- · Ne pas utiliser de joints endommagés (les remplacer).
- Ne pas poser le joint avec des outils ou des objets pointus/acérés.
- Ne pas procéder au montage ou au démontage sous pression.
- Ne pas solliciter mécaniquement l'appareil, ne pas le fixer avec des tensions mécaniques.
- Éviter les tensions mécaniques au niveau du connecteur de pression et du raccordement électrique.
- Éviter que l'appareil ne chauffe au-delà de la limite admissible suite à la compression répétitive de l'air comprimé. La durée minimale autorisée lors des variations de pression Δp est indiquée dans l'illustration 1.



Illustration 1: Durée minimale autorisée T avec une variation de pression maximale ∆pTransport, emballage et stockage

## 3 Transport, emballage et stockage

#### 3.1 Étendue de la livraison

Comparer le contenu de la livraison avec le bon de livraison.

#### 3.2 Transport

Examiner le pressostat à la recherche d'éventuels dommages liés au transport. Communiquer immédiatement tout dommage manifeste.

#### 3.3 Emballage

Retirer l'emballage juste avant le montage. Conserver l'emballage, car il offre une protection optimale en cas de transport (p. ex. changement de lieu de montage, envoi en réparation).

#### 3.4 Stockage

Température de stockage autorisée : -20 ... +80 °C Stocker le capteur de pression dans un environnement sec.

# 4 Description du produit

Le PAC50 détermine la pression appliquée de l'air comprimé et la transpose en un signal de commutation numérique et un signal de sortie analogique (en option). La pression appliquée s'affiche sur un écran LCD. Le réglage des paramètres s'effectue à l'aide de trois gros boutons de commande.

#### 4.1 Fonctions de commutation

4.1.1 Fonction d'hystérésis (surpression, pour toutes les plages de mesure disponibles) En cas d'augmentation de la pression du système, la sortie commute lorsque le point de commutation (SP) correspondant est atteint. Si la pression diminue de nouveau, la sortie ne commute de nouveau qu'une fois le point de commutation de retour (RP) atteint. Si la pression appliquée varie autour du point de commutation réglé sur le capteur de pression, l'hystérésis maintient stable l'état de commutation des sorties (voir illustration 2).



Illustration 2: Fonction d'hystérésis en cas de surpression

4.1.2 Fonction d'hystérésis (sous-pression, uniquement pour les plages de mesure -1 a 0 bar et -1 a + 1 bar) Le changement au point de commutation se produit en cas de chute de pression (sous-pression plus forte) et la commutation retour en cas d'augmentation de la pression (sous-pression pas assez forte). Voir l'illustration 3.



### 4.1.3 Fonction fenêtre

La fonction fenêtre permet de surveiller une plage de pression définie. Si la pression du système se situe entre la limite de fenêtre inférieure (FL) et la limite de fenêtre supérieure (FH), la sortie est active (contact N0, n.o.) ou inactive (contact NF, n.c.). Voir l'illustration 4.



Illustration 4: Fonction fenêtre

#### 4.1.4 Temporisations (0 s à 50 s)

Le réglage d'une temporisation permet d'éviter une commutation non souhaitée de la sortie lors de brèves variations de pression (atténuation).

La pression doit être présente au minimum pendant la temporisation définie pour que la sortie de commutation change d'état. L'état de la sortie de commutation ne change pas immédiatement au moment où l'événement de commutation se produit, mais uniquement après l'expiration de la temporisation réglée (voir illustration 5).





## 4.2 Boutons de commande

Le tableau 1 présente les fonctions des boutons (pour prendre connaissance de la configuration exacte, voir le chapitre 7).

- La manipulation des boutons de commande ne nécessite pas d'outil (pointe de crayon ou similaire).
- Ne pas appuyer sur les boutons avec des outils, des objets pointus ou les ongles.



<Flèche vers le haut/Info>



<Entrée>



<Flèche vers le bas/Menu>

| PAC50 |
|-------|
|-------|

|                                                        | Mode affichage                                                                                                                                                                                                                                                                                                                                                       | Mode programmation                                                                                                |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| <flèche <br="" haut="" le="" vers="">Info&gt;</flèche> | Brève pression de bouton :<br>aucune fonction                                                                                                                                                                                                                                                                                                                        | Brève pression de bouton :<br>• Défilement du menu vers le haut<br>• Valeur de paramètre supérieure/augmentation  |
|                                                        | Longue pression de bouton :<br>affichage des paramètres réglés<br>• SP1 / FH1<br>• RP1 / FL1<br>• SP2 / FH2 (si existants)<br>• RP2 / FL2 (si existants)<br>• Sortie analogique(si existante)<br>• LOW<br>• HIGH                                                                                                                                                     | Longue pression de bouton :<br>• Défilement du menu vers le haut<br>• Valeur de paramètre supérieure/augmentation |
| <flèche <br="" bas="" le="" vers="">Menu&gt;</flèche>  | Brève pression de bouton :<br>aucune fonction                                                                                                                                                                                                                                                                                                                        | Brève pression de bouton :<br>• Défilement du menu vers le bas<br>• Valeur de paramètre inférieure/diminution     |
|                                                        | Longue pression de bouton :<br>passage en mode de programmation.<br>Si un mot de passe est défini (≠ 0000), il est demandé.<br>L'appareil passe en mode de programmation avec la saisie<br>du mot de passe correct. Dans le cas contraire, retour au<br>mode d'affichage                                                                                             | Longue pression de bouton :<br>• Défilement du menu vers le bas<br>• Valeur de paramètre inférieure/diminution    |
| <entrée></entrée>                                      | Brève pression de bouton :<br>aucune fonction                                                                                                                                                                                                                                                                                                                        | Brève pression de bouton :<br>• Sélection de l'option de menu<br>• Confirmation de la valeur de paramètre réglée  |
|                                                        | Longue pression de bouton (> 200 ms) $\rightarrow$ Démarrage de la mesure de fuite (dans la mesure où la fonction est dispo-<br>nible - uniquement PACSO-FGG) ou $\rightarrow$ Réinitialiser dans l'état de disponibilité pour la mesure LT (acquitter la mesure)<br>Pendant la mesure, il est possible de l'interrompre d'une longue pression de bouton (> 2 sec.). |                                                                                                                   |
| ▲ + ▼                                                  | aucune fonction                                                                                                                                                                                                                                                                                                                                                      | Pression simultanée des boutons :<br>• Retour au mode d'affichage                                                 |

Tableau 1 : Fonctions des boutons

### 4.3 Fonctionnement PAC50 LT (PAC50-FGG) pour la mesure de fuite

## 4.3.1 Description fondamentale de la variante

Le PAC50 LT Leakage Tester (PAC50-FGG) possède l'étendue des fonctions de la variante PAC50-FGF avec une fonction supplémentaire intégrée pour contrôler l'absence de fuite dans un système pneumatique fermé ou une section d'un système pneumatique. La fonctionnalité IO-Link n'est pas disponible pour cette variante !

Le réglage de deux seuils (de pression)  $p_1$  et  $p_2$ , ainsi que d'une durée souhaitée de la mesure  $t_{out}$  permet de vérifier si un système pneumatique ou une section fermée présente une fuite.

La mesure peut être lancée d'une simple pression sur un bouton ou avec une commande (signal d'entrée sur Q1). Q1 n'est ainsi pas utilisé comme sortie mais comme entrée numérique.

Dans la mesure où le système ne présente pas de chute de tension, et que le seuil supérieur  $p_1$  est traversé, la mesure du temps démarre jusqu'à ce que soit le seuil inférieur  $p_2$  soit traversé, soit jusqu'à ce que la fin de la durée de mesure souhaitée soit atteinte ( $t_{out}$ ). La valeur de temps dT ou la chute de pression dP est transmise au choix via la sortie analogique du capteur (en fonction du pré-réglage). Après la mesure, les deux valeurs s'affichent en alternance avec le taux de fuite QL dans la ligne inférieure de l'écran. Lors du passage du seuil inférieur, la couleur de l'écran passe au rouge pour signaliser une fuite.



Illustration 6: Représentation schématique mesure de fuite

#### 4.3.2 Démarrage de la mesure de fuite

Une fois le capteur connecté à une source de tension correspondant aux spécifications, le capteur démarre et affiche d'abord à l'écran l'initialisation « SICK PAC50-LT » et la version de firmware correspondante « FWv x.xx ». Il passe ensuite immédiatement en mode Leakage Tester. La pression système actuellement appliquée  $p_0$  ainsi que « Wait » et « User » s'affichent dans les deux lignes inférieures. Tout s'affiche en vert à l'écran. Une pression plus longue (> 200 ms) sur le bouton central O démarre la mesure avec les paramètres préréglés.

Le réglage par défaut est :

- p<sub>1</sub> = 0,6 bar
- $p_2 = 0.4$  bar
- t<sub>out</sub> = 30 secondes
- PVOL = 0,0 litre
- Q<sub>A</sub> = dT

La mesure peut également être démarrée par une impulsion d'une commande. L'impulsion est envoyé via Q1 comme signal d'entrée au capteur.

4.3.3 Modification des paramètres en mode LT.

Une pression plus longue (> 2 secondes) sur le bouton  $\overline{\mathbf{v}}$  permet d'accéder au réglage du LTP1. Pour le modifier, il faut appuyer sur  $\overline{\mathbf{b}}$ . La valeur peut être modifiée avec  $\overline{\mathbf{a}}$  ou  $\overline{\mathbf{v}}$ . Pour enregistrer la valeur souhaitée, il faut appuyer à n<u>ou</u>veau sur  $\overline{\mathbf{b}}$ .

Appuyer sur le bouton 🔽 permet d'accéder au réglage LTP2 qui est réalisé comme LTP1.

Ensuite  $\blacksquare$  et  $\bigcirc$  permettent de de définir la valeur pour la durée de la mesure (en secondes de 0,1 à 9.999) TOUT avec  $\blacksquare$  ou  $\blacksquare$  et modifiée avec  $\bigcirc$ 

L'étape de menu suivante, qui est accessible avec ▼ permet de régler le volume de l'installation à mesurer ou de la section à mesurer après avoir appuyé sur 会 avec les boutons ▲ ou ▼, dans la mesure où l'utilisateur le sait. Si le volume est saisi, l'utilisateur obtient en fin de mesure l'information du taux de fuite en l/min à l'écran.

Lors de l'étape suivante, on accède à nouveau en appuyant sur le bouton I au point de menu SET AMODE. En appuyant sur 🕄 il est ensuite possible de choisir avec 🔺 ou 🔽 si la valeur pour dT ou dP doit être transmise via la sortie analogique.

La dernière étape consiste à accéder au point de menu STOP LT via ▼. En confirmant avec et en sélectionnant avec ou ▼, l'utilisateur peut décider ici s'il souhaite utiliser le capteur en mode LT (sélection « NO ») ou s'il souhaite utiliser le capteur dans sa forme comme capteur (sélection « YES »). La sélection correspondante est confirmée avec

Une nouvelle pression sur le bouton 💌 met le capteur en disponibilité pour la mesure dans le mode correspondant.

4.3.4 Modification des paramètres en mode LT.

Le capteur se trouve en disponibilité pour la mesure (voir 4.3.2), l'affichage à l'écran apparait en verre et la mesure est soit démarrée en appuyant sur le bouton 🕤 manuellement ou démarrée via Q1 comme entrée de commutation via l'API. La mesure actuelle est toujours affichée dans la zone supérieure de l'écran ! Les scénarios suivants peuvent survenir durant la mesure :

4.3.4.1 Pression d'alimentation de l'installation  $p_0 < seuil (de pression) p_1 ou p_2$ 

Une fois la mesure démarrée, le capteur passe directement dans un mode erreur tant que  $p_0$  n'est pas au moins supérieur de 0,02 bar au seuil supérieur  $p_1$ . L'écran vire au rouge. À l'écran « WARN » apparait sous la mesure actuelle et «  $p < p_1$  » ainsi que la mesure pour  $p_1$  (par ex. « 0,60 ») ou «  $p < p_2$  » et la valeur pour  $p_2$  apparaissent dans la ligne inférieure.

Le message doit être acquitté en appuyant sur le bouton 🕤 pour repasser le capteur en disponibilité pour la mesure.

4.3.4.2 Pression d'alimentation  $p_0 > p_1$  et atteinte de  $t_{out}$  avant la non atteinte de  $p_1$ La minuterie A démarre une fois la mesure démarrée. Le seuil supérieure  $p_1$  n'est pas atteint avec l'atteinte de tout. Durant la mesure, « TimA » apparait dans la ligne d'état supérieure avec l'indication de temps en seconde et dans la ligne d'état inférieure «  $P > P_1$  » avec l'indication de la valeur pour P1 par ex. « 0.60 ». La mesure s'arrête dès que la valeur de temps a été atteinte pour  $t_{out}$ . « DONE » apparait dans la ligne d'état supérieure pour indiquer que la mesure est terminée. Dans la ligne d'état inférieure apparaissent en alternance les valeurs pour dP (différence de pression entre  $p_0$  et la pression actuelle en atteignant  $t_{out}$ ), dT (correspond dans ce cas à  $t_{out}$ ) et la valeur pour QL (valeur absolue dans la mesure où un volume a été prescrit ou « - - -QL » dans la mesure où Vol = 0 a été conservé).

Le message doit être acquitté en appuyant sur le bouton 😔 pour repasser le capteur en disponibilité pour la mesure.

4.3.4.3 Pression d'alimentation  $p_0 > p_1$  et non atteinte de  $p_1$  avant  $t_{out}$ 

Si une fois la mesure démarrée la valeur de pression supérieure  $P_1$  n'est pas atteinte, la mesure démarre alors de dT. « MEAS » apparait alors dans la ligne de statut supérieure. Dans la ligne inférieure apparaissent en alternance les valeurs pour dP (différence de pression entre p0 et la pression actuelle) pour dT (période en secondes depuis le passage de  $p_1$ ) et QL À expiration de tout « DONE » apparait dans la ligne d'état supérieure, ainsi qu'en alternance le résultat de dP, dT et QL dans la ligne d'état. Le message doit être acquitté en appuyant sur le bouton  $\bigcirc$  pour repasser le capteur en disponibilité pour la

Le message doit être acquitté en appuyant sur le bouton 🕏 pour repasser le capteur en disponibilité pour la mesure.

4.3.4.4 Pression d'alimentation  $p_0 > p_1$  et non atteinte de  $p_1$  et  $p_2$  avant  $t_{out}$ 

Si une fois la mesure démarrée la valeur de pression supérieure  $P_1$  n'est pas atteinte, la mesure démarre alors de dT. « MEAS » apparait alors dans la ligne de statut supérieure. Dans la ligne inférieure apparaissent en alternance les valeurs pour dP (différence de pression entre p1 et P2) pour dT (période en secondes depuis le passage de  $p_1$  jusqu'à l'atteinte de  $p_2$ ) et QL Lors de la non atteinte du seuil (de pression) inférieur  $P_2$  la couleur de l'écran passe du vert au rouge (pour signaliser la présence d'une fuite). « DONE » apparait dans la ligne d'état supérieure, ainsi qu'en alternance le résultat de dP, dT et QL dans la ligne d'état inférieure.

Le message doit être acquitté en appuyant sur le bouton 🔁 pour repasser le capteur en disponibilité pour la mesure.



### 4.4 Affichage avec changement de couleur

Le PAC50 dispose d'un écran LCD rétroéclairé. L'écran se subdivise en différentes zones (voir illustration 6 et tableau 2).



Illustration 7: Zones de l'écran

|                         | Zones de l'écran                        |                                                                                           |                                    |                                         |                                                     |
|-------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|-----------------------------------------------------|
|                         | А                                       | В                                                                                         | C1 / C2                            | D1/D2                                   | E1 / E2                                             |
| Mode affichage          | Affichage de la pres-<br>sion appliquée | Symbole de clé si le<br>verrouillage de bouton<br>est défini, unité de<br>pression réglée | Seuils de commuta-<br>tion définis | État de la sortie de<br>commutation 1/2 | Valeur définie<br>pour les seuils de<br>commutation |
| Mode program-<br>mation | Valeur du paramètre<br>sélectionné      | Paramètre sélec-<br>tionné                                                                | Informations supplé-<br>mentaires  | État de la sortie de commutation 1/2    | Valeur définie<br>pour les seuils de<br>commutation |

Tableau 2 : Affichage dans les zones de l'écran

|                | Zones de l'écran                        |                                                                                        |                                                                             |       |         |
|----------------|-----------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|---------|
|                | А                                       | В                                                                                      | C1/C2                                                                       | D1/D2 | E1 / E2 |
| Mode affichage | Affichage de la pres-<br>sion appliquée | Symbole de clé (en<br>cas de verrouillage<br>des boutons), unité de<br>pression réglée | Affichage de la<br>disponibilité pour la<br>mesure<br>(« WAIT » / « USER ») |       |         |

| Mode de mesure          | Affichage de la pres-<br>sion appliquée | Unité de pression<br>réglée | C1 : état de la<br>mesure de fuite<br>(Wait User, MEAS<br>DONE) ou TimA<br>jusqu'à l'atteinte<br>de P1, message<br>d'erreur (* WARN *)<br>en cas de pression<br>d'alimentation insuf-<br>fisante, * DONE *<br>une fois la mesure<br>terminée (sans<br>erreur)<br>C2 : en alternance<br>QL, dT, dP<br>ou P>P1 jusqu'à<br>l'atteinte de P1<br>ou P<22 jusqu'à<br>l'atteinte de P2 | D2 : état « Activation<br>de la mesure de<br>fuite » | E1 : minuterie en<br>secondes jusqu'à<br>l'atteinte de P1 E2 :<br>mesures QL, dT, dP |
|-------------------------|-----------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|
| Mode program-<br>mation | Valeur du paramètre<br>sélectionné      | Paramètre sélec-<br>tionné  |                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                                                      |

Tableau 3 : Affichage dans les zones de l'écran du mode LT

Lorsque les points de commutation définis sont atteints (SP1/2, RP1/2, FH1/2 ou FL1/2), la couleur des zones de l'écran affectées aux différents points de commutation bascule entre le vert et le rouge. Il est possible de régler le changement de couleur à l'aide de la fonction « DISC » :

- Rouge si le point de commutation n'est pas atteint ou si la valeur est inférieure à ce point ou si la pression appliquée se situe dans la fenêtre définie, vert si le point de commutation est dépassé ou si la pression appliquée se situe en dehors de la fenêtre (fonction « DISC » : OD)
- Rouge si le point de commutation est dépassé ou si la pression appliquée se situe en dehors de la fenêtre définie, vert si le point de commutation n'est pas atteint ou si la valeur est inférieure à ce point ou si la pression appliquée se situe dans la fenêtre (fonction « DISC » : DU)
- Toujours rouge (sans changement de couleur, fonction « DISC » : RED)

- Toujours vert (sans changement de couleur, fonction « DISC » : GRN)
- Mode économie d'énergie. L'écran est désactivé. En appuyant sur l'un des boutons, l'écran s'active pendant 10 s (fonction « DISC » : OFF)

#### 4.5 IO-Link (si existant)

Une description des fonctions IO-Link du PAC50 et le fichier IODD (IO-Link Device Description) correspondant peuvent être téléchargés à l'adresse www.sick.com.

#### 4.6 Respect de l'environnement

Le PAC50 est conçu dans le respect de l'environnement. Il consomme un minimum d'énergie. Toujours travailler dans le respect de l'environnement. Pour cela, observer les informations suivantes à propos de la mise au rebut. L'écran du PAC50 peut être arrêté (fonction DISC). La consommation de l'appareil est ainsi réduite.

### 4.6.1 Mise au rebut après la mise hors service définitive

Mettez toujours les appareils hors d'usage ou irréparables au rebut conformément aux prescriptions d'élimination des déchets en vigueur dans le pays concerné. SICK AG ne reprend aucun appareil hors d'usage ou irréparable.

# 5 Installation/raccordement mécanique



Veiller à un montage sans sollicitation mécanique sur le capteur de pression. Les conditions ambiantes spécifiées dans la section 9 (données techniques) doivent être observées, Le transmetteur de pression ne doit pas être exposé à la condensation.

### 5.1 Montage sur rail DIN

Le capteur de pression PAC50 possède une fixation intégrée pour le montage sur un rail DIN selon DIN EN 60715; 35 mm x 15 mm / 7,5 mm.

- Pour le montage, placez le PAC50 avec le guidage de fixation sur le rail DIN (voir illustration 7 ①) et basculez le PAC50 vers le haut jusqu'à ce qu'il s'enclenche (voir illustration 7 ② et ③).
- Pour détacher le PAC50 du rail DIN, tirez le clip de fixation vers le bas et basculez le PAC50 vers le haut pour le sortir du rail DIN.



#### Illustration 8: Montage sur rail DIN

#### 5.2 Montage avec kit de montage de tableau de distribution

### 5.2.1 Kit de montage standard - article 2069200

Pour un montage dans un tableau de distribution, utilisez le kit de montage de tableau de distribution disponible comme accessoire (voir illustration 8). L'épaisseur maximale du tableau de distribution est de 5 mm. L'illustration 9 indique les dimensions de la découpe dans le tableau de distribution.



Illustration 9: Kit de montage de tableau de distribution

5.2.2 Kit de montage robuste pour des applications pointues (choc/vibration) - article 2099916 Pour un montage dans un tableau de distribution, utilisez le kit de montage de tableau de distribution pour applications robustes disponible comme accessoire (voir illustration 10). L'épaisseur maximale du tableau de distribution est de 5 mm. L'illustration 11 indique les dimensions de la découpe dans le tableau de distribution.



Illustration 10: Kit de montage de tableau de distribution, robuste



Illustration 11: Ouverture dans le tableau de distribution

- Placez le cadre de montage du tableau de distribution de l'extérieur dans le tableau de distribution de manière à ce que les ouvertures pour les rails de fixation pointent vers le haut [1].
- Glissez les rails de fixation par le haut dans le cadre de montage du tableau de distribution jusqu'en butée [2].
- Vissez avec précaution les quatre vis de fixation courtes prévissées pour les rails de fixation jusqu'en butée (max. 8 Ncm) [3].
- À partir de l'arrière, placez le capteur de pression dans le logement du cadre de montage du tableau de distribution [4].
- Fixez l'élément de fixation dans le logement de rail DIN du capteur de pression [5].
- Vissez avec précaution l'élément de fixation avec les rails de fixation avec les deux longues vis de fixation (max. 8 Ncm) [6].
- Resserrez toutes les vis avec précaution (max. 8 Ncm).

#### 5.3 Montage avec kit de montage mural

Fixez l'élément de fixation dans le logement de rail DIN du capteur de pression, voir illustration 10.



Illustration 12: Montage avec kit de montage mural

#### 5.4 Connecteur de pression avec un filetage interne G 1/4 (illustration 13)

Utilisez un joint approprié. Ne pas poser le joint avec des outils ou des objets pointus/acérés. Veillez à des surfaces d'étanchéité propres et non endommagées sur l'appareil et sur le point de mesure. Utilisez uniquement des filetages externes G ¼ droits (pas coniques) avec le PAC50. Utilisez uniquement des raccords vissés d'étanchéité axialement sur la bride extérieure avec une profondeur de pénétration maximale de 9 mm. L'utilisation de filetages de raccordement incorrects peut entraîner la destruction de l'appareil. Évitez tout gauchissement des filets lors du vissage. Un couple de serrage de 1,5 Nm  $\pm$  0,5 Nm doit être respecté. Cette valeur ne doit pas être dépassée. Fermer le filetage interne G ¼ inutilisé avec le bouchon obturateur fourni. Placer le joint pour bouchon obturateur et serrer avec 1 Nm  $\pm$  0,3 Nm.



MA = 1 Nm +/- 0,3 Nm

Illustration 13: Connecteur de pression filetage interne G 1/4

5.5 Connecteur de pression avec connecteur enfichable pour tuyau pneumatique (Push-In-Fitting, illustration 14)

Le raccord enfichable convient aux flexibles pneumatiques d'un diamètre extérieur de 4 mm. Vérifiez le bon positionnement du tuyau pneumatique branché avant d'alimenter le capteur de pression de pression. Fermer le filetage interne G ¼ au dos avec le bouchon obturateur fourni. Positionner le joint pour le bouchon obturateur et serrer ce dernier avec une clé Allen (6 mm) avec un couple de serrage de  $1 \text{ Nm} \pm 0,3 \text{ Nm}$ . Pour détacher le tuyau pneumatique, poussez contre la bague en plastique grise du raccord enfichable et retirez le tuyau pneumatique avec précauton.



Illustration 14: Raccord enfichable pour tuyau pneumatique 4 mm (Push-In-Fitting, PIF)

#### 5.6 Raccord process via filetage interne NPT 1/4 (illustration 15)

Toutes les variantes avec le code de type PAC50-xNx disposent sur la face inférieure de l'appareil d'un raccord process avec un filetage interne conique ¼" NPT. Cela fait en sorte que le raccord process alternatif situé sur la face inférieure avec un filetage parallèle G ¼" ne peut pas être utilisé.

Le bouchon obturateur G ¼" du raccord process arrière n'est pas compatible avec le filetage interne ¼" NPT conique. Il ne faut de ce fait pas l'utiliser pour fermer le raccord process ¼" NPT situé sur la face inférieure de l'appareil. Dans le cas contraire, le capteur pourrait être détruit. La profondeur de pénétration du raccord process ¼" sur la face inférieure est de max. 9 mm.



Illustration 15: Filetage interne NPT 1/4"

## 6 Raccordement électrique

Le raccordement électrique est réalisé via un connecteur cylindrique M12 x 1. Tableau 3, illustration 13, tableau 4 et illustration 14 montrent les affectations de broche des différentes variantes d'appareils/signaux de sortie disponibles.



### ATTENTION!

Observez les indications relatives aux propriétés électriques du capteur de pression en section 9 (données techniques).

| Signaux de sortie                     | Désignation de type | Raccordement électrique | Affectation des broches                                             |
|---------------------------------------|---------------------|-------------------------|---------------------------------------------------------------------|
| 2 x numérique                         | PAC50-xxA           | M12 x 1, 4 pôles        | L <sup>+</sup> = 1, M = 3, Q <sub>1</sub> = 4, Q <sub>2</sub> = 2   |
| 1 x numérique + analogique            | PAC50-xxB           | M12 x 1, 4 pôles        | $L^{+} = 1, M = 3, Q_{1} = 4, Q_{A} = 2$                            |
| 1 x IO-Link/numérique +<br>analogique | PAC50-xxD           | M12 x 1, 4 pôles        | L <sup>+</sup> = 1, M = 3, C/Q <sub>1</sub> = 4, Q <sub>2</sub> = 2 |

Tableau 4 : Affectation des broches après signal de sortie, 4 pôles



Illustration 16: Affectation des broches M12 x 1, 4 pôles

| Signaux de sortie                                 | Désignation de type | Raccordement électrique | Affectation des broches                             |
|---------------------------------------------------|---------------------|-------------------------|-----------------------------------------------------|
| 2 x numérique + analogique                        | PAC50-xxC           | M12 x 1, 5 pôles        | $L^{+} = 1, M = 3, Q_{1} = 4, Q_{2} = 2, Q_{A} = 5$ |
| 1 x IO-Link/numérique +<br>numérique + analogique | PAC50-xxF           | M12 x 1, 5 pôles        | $L^* = 1, M = 3, C/Q_1 = 4, Q_2 = 2, Q_A = 5$       |

Tableau 5 : Affectation des broches après signal de sortie, 5 pôles





Illustration 17: Affectation des broches M12 x 1, 5 pôles

Le Leakage Tester est une variante PAC50-FGG qui au niveau des signaux de sortie et de l'affectation des broches est décrite de la même manière que PAC50-xxF avec le connecteur 5 pôles.

| Référence | Type d'ap-<br>pareil | Plage de<br>mesure | mode des<br>appareils | Signal de sortie                                            | Signal d'entrée                                  |
|-----------|----------------------|--------------------|-----------------------|-------------------------------------------------------------|--------------------------------------------------|
| 1098276   | PAC50-FGG            | -1+10 bar          | Mode standard         | PNP/NPN/Push-Pull<br>+ PNP/NPN/Push-Pull<br>+420 mA / 010 V |                                                  |
|           |                      |                    | Leakage Tester        | PNP/NPN/Push-Pull<br>+420 mA / 010 V                        | Entrée de commutation<br>numérique PNP<br>(C/Q1) |

Tableau 6 : Signaux de sortie Leckage-Tester

## 7 Fonctionnement et réglage des paramètres

### 7.1 Initialisation

Une fois le raccordement à l'alimentation électrique effectué tous les segments de l'écran s'allument pendant 2 s dans la couleur de base, puis 2 s dans la couleur d'avertissement afin de pouvoir vérifier le fonctionnement impeccable de tous les segments. Les affichages suivants s'affichent ensuite pendant 2 s.

- Zone de l'écran A : « SICK »
- Zone de l'écran B : « PAC50 ou PAC50-LT pour la variante PAC50-FGG »
- Zones de l'écran C2 et E2 : « Version du firmware »

L'appareil passe ensuite en mode écran.

#### 7.2 En fonctionnement : mode écran

Les fonctions de mesure et de commutation sont en marche.

 L'appareil dispose d'un mode économie d'énergie, durant lequel l'écran est éteint (fonction « DISC »). En mode économie d'énergie (DISC : OFF), l'écran est brièvement réactivé (10 s) en appuyant sur l'un des boutons.

### 7.3 Mode info

Après une pression plus longue ( > 3 s) sur le bouton A, les paramètres suivants s'affichent à l'écran pendant respectivement 3 s (voir « Info paramètres » dans la section 2). L'appareil revient ensuite en mode écran :

- SP1 / FH1 (Réglage du point de commutation 1 / de la limite de fenêtre supérieure 1)
- RP1 / FL1 (Réglage du point de commutation de retour 1 / de la limite de fenêtre inférieure 1)
- SP2 / FH2 (Réglage du point de commutation 2 / de la limite de fenêtre supérieure 2)
- RP2 / FL2 (Réglage du point de commutation de retour 2 / de la limite de fenêtre inférieure 2)
- Sortie analogique (signal de sortie électrique en mA ou V)
- LOW (valeur de pression minimale appliquée enregistrée depuis la dernière réinitialisation)
- HIGH (valeur de pression maximale appliquée enregistrée depuis la dernière réinitialisation)
Il est possible de quitter prématurément le mode info en appuyant en même temps sur les boutons  $\blacktriangle$  et  $\bigtriangledown$  ou en appuyant sur le bouton central 2.

#### 7.4 Mode programmation

### 7.4.1 Régler les paramètres des appareils

Pour passer en mode programmation il faut appuyer sur le bouton 🔽 pendant plus de 2 s. En cas d'inactivité prolongée en mode programmation (> 15 s), l'appareil revient automatiquement en mode écran. Pendant que l'appareil se trouve en mode programmation, les fonctions de mesure et de commutation demeurent actives (en arrière plan).

Sélection :

- Il convient d'abord de choisir le paramètre/point de menu qui doit être réglé à l'aide des boutons le et V.
  La remarque dans la zone de l'écran B : « SET » aide ici.
- Pour sélectionner le paramètre/point de menu à régler, il faut appuyer sur le bouton central 😔.

Réglage :

- La valeur du paramètre à régler s'affiche dans la zone de l'écran A. Les zones de l'écran C1/2 et E1/2 affichent les valeurs de paramètres réglées jusque lors.
- Les boutons ▲ et ▼ permettent de régler le paramètre et de le confirmer ensuite avec le bouton 3.
- Au moment où une valeur de paramètre sélectionnée est confirmée en appuyant sur le bouton \$\overlimes\$, le réglage devient actif, même si le capteur de pression se trouve encore en mode programmation.

### 7.4.2 Structure du menu, description des paramètres et réglages d'usine (illustration 14)



| Plage de valeurs                        | Réglages par défaut |
|-----------------------------------------|---------------------|
| Min : MBA +0,2 % de la plage, max : MBE | MBE                 |
| Min : MBA, max : MBE -0,2 % de la plage | MBE - 10 %          |
| Min : MBA +0,2 % de la plage, max : MBE | MBE                 |
| Min : MBA, max : MBE -0,2 % de la plage | MBE - 10 %          |
|                                         |                     |
| 0 50 s                                  | 0 s                 |
| HNO, HNC, FNO, FNC                      | HNO                 |

| Î         |          |        | Description                                                                                                                                                                                                                                                                               |
|-----------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ţ         |          |        |                                                                                                                                                                                                                                                                                           |
| OU2       | →        | PARA   | Fonction de commutation de la sortie de commutation 2<br>(Lorsque 2e sortie de commutation disponible)<br>Fonction d'hystérésis, contact : HNO<br>Fonction d'hystérésis, contact HNC<br>Fonction fenêtre, contact : FNO<br>Fonction fenêtre contact : FNC<br>Fonction de diagnostic : DIA |
| 1<br>D N  | _        | DADA   | l origue de commutation des sorties de commutation : DND NDN ou Dush-                                                                                                                                                                                                                     |
| P-N       | -        | PARA   | Puil (Uniquement valable pour les deux sorties numériques si la 2e sortie<br>de commutation est disponible) Pour l'option IO-Link Q1 est toujours PNP)                                                                                                                                    |
| Ţ         |          |        |                                                                                                                                                                                                                                                                                           |
| OUA       | <b>→</b> | PARA   | (Lorsqu'une sortie analogique est disponible) :                                                                                                                                                                                                                                           |
|           |          |        | Signal de sortie inversé 204 mA : IINV<br>Signal de sortie : 010 V : U<br>Signal de sortie inversé 100 V : UINV<br>Détection automatique en fonction de la résistance de charge<br>appliquée (signaux de sortie non inversés) : AUTO                                                      |
| ↓<br>UNIT | <b>→</b> | Unité  | Réglage de l'unité de pression à l'écran                                                                                                                                                                                                                                                  |
| 1         |          | onico  |                                                                                                                                                                                                                                                                                           |
| OSET      | <b>→</b> | YES/NO | Correction offset point zéro, max. 5 %                                                                                                                                                                                                                                                    |
| 1         |          |        |                                                                                                                                                                                                                                                                                           |
| DISM      | <b>→</b> | PARA   | Affichage des points de commutation/limites de fenêtre dans les<br>zones d'écran C et E : <b>SPRP</b><br>Affichage des valeurs LOW/HIGH dans les zones d'écran C et E : <b>LoHi</b>                                                                                                       |
| DISU      | <b>→</b> | Valeur | Mise à jour écran                                                                                                                                                                                                                                                                         |
| I         |          |        |                                                                                                                                                                                                                                                                                           |
| DISR      | <b>→</b> | YES/NO | Renverser électroniquement l'affichage écran dans le champ                                                                                                                                                                                                                                |
| 1         |          |        | d'affichage respectif                                                                                                                                                                                                                                                                     |

| Plage de valeurs                      | Réglages par défaut |
|---------------------------------------|---------------------|
| HNO, HNC, FNO, FNC, DIA               | HNO                 |
|                                       |                     |
| PNP, NPN, P/P                         | PNP                 |
|                                       |                     |
| I, IINV, U, UINV, AUTO                | AUTO                |
|                                       |                     |
| BAR, MPA, KPA, PSI, inHg              | BAR                 |
|                                       | -                   |
|                                       |                     |
| SPRP, LoHi                            | SPRP                |
|                                       |                     |
| 1/2/5/10 actualisations écran/seconde | 5/s                 |
|                                       | NO                  |
|                                       |                     |
|                                       |                     |



MBA : début de la plage de mesure MBE : fin de la plage de mesure EF : fonctions de programmation étendues

| Plage de valeurs            | Réglages par défaut |
|-----------------------------|---------------------|
|                             |                     |
| OD, DU, RED, GRN, OFF       | OD                  |
|                             |                     |
| Sans possibilité de réglage | MBA                 |
|                             |                     |
| Sans possibilité de réglage | MBE                 |
|                             |                     |
|                             | -                   |
|                             |                     |
|                             | sans                |
|                             |                     |

sans

### 7.4.3 Structure menu PAC50-FGG (Leakage Tester)



| Plage de valeurs                                      | Réglages par défaut |
|-------------------------------------------------------|---------------------|
|                                                       |                     |
|                                                       |                     |
|                                                       |                     |
| -1.00 0,02 +0,02 +10.000 bar (MPa,<br>KPa, PSI, inHg) | 0,6 bar             |
|                                                       |                     |
| -1.00 0,02 +0,02 +10.000 bar (MPa,<br>KPa, PSI, inHg) | 0,4 bar             |
|                                                       |                     |
| 1.0 9.999 secondes                                    | 30 secondes         |
|                                                       |                     |
| 0,0 litre                                             | 0,0 litre           |
|                                                       |                     |
| dp ou dT pour port analogique                         | dT                  |
|                                                       |                     |
| YES ou NO pour Leakage Tester Mode                    | LT Mode             |

# 8 Erreur

## 8.1 Erreurs et avertissements (affichage clignotant dans les segments écran A et B, tableau 5)

| Affichage<br>A | Affichage B            | État          | Description                                                                                                                                                                                                                                                  | Action nécessaire                                                                                        |
|----------------|------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| OL             | OVERPRESS              | Erreur        | Pression appliquée > fin de plage de mesure                                                                                                                                                                                                                  | Régler la pression dans la<br>plage de mesure                                                            |
| UL             | UNDERPRES              | Erreur        | Pression appliquée < début de plage de mesure                                                                                                                                                                                                                | Régler la pression dans la<br>plage de mesure                                                            |
| ERR1           | GEN.ERROR              | Erreur        | Erreurs générales                                                                                                                                                                                                                                            | Contacter l'entreprise SICK                                                                              |
| ERR2           | SHORTOUT1<br>SHORTOUT2 | Erreur        | Court-circuit existant sur l'une des deux sorties                                                                                                                                                                                                            | Éliminer le court-circuit                                                                                |
| ERR3           | OVERVOLTG              | Erreur        | Tension d'alimentation appliquée > 30 V DC                                                                                                                                                                                                                   | Réglage correct de l'alimenta-<br>tion en tension                                                        |
| ERR4           | LOW VOLTG              | Erreur        | Tension d'alimentation appliquée < 17 V DC                                                                                                                                                                                                                   | Réglage correct de l'alimenta-<br>tion en tension                                                        |
| ATT1           | SHIFT RP1<br>SHIFT RP2 | Avertissement | Réglage du point de commutation par l'utilisateur<br>en-dessous du point de commutation de retour<br>défini. Le point de commutation de retour est placé<br>automatiquement avec la plus petite hystérésis<br>possible sous le nouveau point de commutation. | Acquitter en appuyant sur le<br>bouton <entrée></entrée>                                                 |
| ATT2           | ADJ>LIMIT              | Avertissement | S'affiche lorsque lors du tarage de point zéro, la<br>pression appliquée se situe en dehors de la limite<br>permise de 5 % de la plage.                                                                                                                      | Acquitter en appuyant sur le<br>bouton <entrée></entrée>                                                 |
| LOCK           | KEYLOCKED              | Avertissement | La remarque s'affiche lorsque l'on tente de passer<br>en mode programmation avec un blocage de saisie<br>actif.                                                                                                                                              | Saisie du mot de passe ou<br>déverrouillage via IO-Link<br>si la saisie via IO-Link a été<br>verrouillée |

Tableau 7 : Défauts et avertissements

| lotice d'instruction | Erreur | PAC50 |
|----------------------|--------|-------|
|                      |        |       |

### PAC50-FGG (Leakage Tester)

Une fois la mesure démarrée, le capteur passe directement dans un mode erreur tant que  $p_0$  n'est pas au moins supérieur de 0,02 bar au seuil supérieur  $p_1$ . L'écran vire au rouge. À l'écran « WARN » apparait sous la mesure actuelle (position écran C1) et «  $p < p_1$  » (position écran C2) ainsi que la valeur pour p1 (par ex. « 0,60 » position écran E2) ou «  $p < p_2$  » et la valeur pour  $p_2$  apparaissent dans la ligne inférieure. Le message doit être acquitté en appuyant sur le bouton 💬 pour repasser le capteur en disponibilité pour la mesure.

#### 8.2 Comportement de la sortie numérique en cas de panne

La sortie de commutation 2 (si disponible) peut être définie comme une sortie de diagnostic (fonction « OU2 »). Le tableau 8 indique les états de commutation définis en cas d'erreur.

| Affichage<br>à l'écran | Fonction                                                            | Sorties numériques             |                       | Sortie diagnostic : commutation<br>antivalente |                   |                    |                   |
|------------------------|---------------------------------------------------------------------|--------------------------------|-----------------------|------------------------------------------------|-------------------|--------------------|-------------------|
| (Plage A)              |                                                                     | Mode PNP                       | Mode NPN              | Mode<br>Push-pull                              | Mode PNP          | Mode NPN           | Mode<br>Push-pull |
| OL                     | Surpression : pression<br>appliquée > fin de plage<br>de mesure     | Made some                      |                       |                                                |                   | Low                |                   |
| UL                     | Sous-pression : pression<br>appliquée < début de<br>plage de mesure | Mode normal                    |                       |                                                |                   |                    | NPN actif         |
| ERR1                   | Erreurs générales                                                   |                                |                       |                                                | Low<br>Uniquement | High<br>Uniquement |                   |
| ERR2                   | Court-circuit existant sur<br>l'une des deux sorties                | Low<br>Uniquement<br>Pull-Down | High                  | Low                                            | Pull-Down         | Pull-Up            | Low               |
| ERR3                   | Tension d'alimentation<br>appliquée > 30 V DC                       |                                | Uniquement<br>Pull-Up | NPN Pull-<br>Down                              |                   |                    | NPN Pull-<br>Down |
| ERR4                   | Tension d'alimentation<br>appliquée < 17 V DC                       |                                |                       |                                                |                   |                    |                   |

Tableau 8 : Comportement des sorties numériques en cas d'erreur

#### 8.3 Comportement de la sortie analogique en cas de panne



Illustration 18: Comportement de la sortie analogique en cas de panne (1)

Sortie de courant conformément à la plage valide selon NAMUR NE43 : courant de sortie max. 20,5 mA/courant de sortie min. 3,8 mA, La transition entre la zone linéaire MBA...MBE...OL peut être discontinue entre MBE et OL. (UL...MBA : dto.)



Illustration 19: Comportement de la sortie analogique en cas de panne (2). « Dépassement » net de la tension de sortie de 10 V pour augmenter la robustesse dans l'installation en cas de tensions résiduelles.

# 9 Caractéristiques techniques

# 9.1 Caractéristiques

| Milieu                    | Air comprimé sec                                                                                                                                                                                                                                    |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qualité de l'air comprimé | Selon ISO 8573-1 :2010<br>Taille max. des particules : ≤ 40 μm<br>Teneur en huile : 0-40 mg/m³<br>Le point de rosée sous pression doit se situer au moins 15 °C en dessous de la<br>température ambiante et du milieu et doit s'élever à max. 3 °C. |
| Calibrage du point zéro   | Max. 5 % de la plage                                                                                                                                                                                                                                |
| Plages de mesure          | -1 bar 0 bar; -1 bar +1 bar; 0 bar +6 bar; 0 bar +10 bar; -1 10 bar                                                                                                                                                                                 |
| Température de processus  | 0 °C 60 °C                                                                                                                                                                                                                                          |
| Sorties de commutation    | Selon la variante, 1 ou 2 sorties de commutation de transistor                                                                                                                                                                                      |
|                           | PNP/NPN/push-pull réglable (pour la variante avec lien IO-Link : sortie de com-<br>mutation 1 : lien IO-Link/PNP et sortie de commutation 2 : PNP/NPN/push-pull<br>commutable)                                                                      |
|                           | Fonction : contact NO/contact NF, fonction fenêtre/hystérésis réglable librement                                                                                                                                                                    |
|                           | Tension de commutation : tension d'alimentation L <sup>+</sup> – 2 V [V DC]                                                                                                                                                                         |
|                           | Courant de commutation max. par sortie de commutation : 100 mA                                                                                                                                                                                      |
|                           | Variantes avec IO-Link : IO-Link version 1.1                                                                                                                                                                                                        |
|                           | Temporisation à la retombée : 0 s à 50 s (programmable)                                                                                                                                                                                             |
|                           | Temps de commutation $\leq$ 5 ms                                                                                                                                                                                                                    |
| Sortie de diagnostic      | Pour les variantes avec 2 sorties de commutation : la sortie numérique 2 peut être définie comme une sortie de diagnostic. En cas de panne : voir le tableau 8.2                                                                                    |

| Signal de sortie analogique | En option, 4 mA à 20 mA / 0 V à 10 V. Commutation automatique selon la charge raccordée ou réglable de manière fixe. Signaux de sortie inversables : 20 mA à 4 mA / 10 V à 0 V |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Résistance de charge $R_A$ pour sortie de courant < 600 Ohm<br>Résistance de charge $R_A$ pour sortie de tension > 3 kOhm                                                      |
| Écran                       | LCD avec éclairage d'arrière-plan LED (vert/rouge), orientable électroniquement de 180 $^\circ$                                                                                |
|                             | Affichage de la pression : 4 caractères, 16 segments                                                                                                                           |
|                             | Unité de pression commutable sur l'affichage : bars, MPa, kPa, psi et inHg                                                                                                     |
|                             | Mise à jour : 1.000, 500, 200 et 100 ms (réglable)                                                                                                                             |
|                             |                                                                                                                                                                                |

Tableau 9 : Caractéristiques

#### 9.2 Performance

| Non-linéarité                   | $\leq \pm$ 0,5 % de la plage (Best Fit Straight Line, BFSL) selon CEI 61298-2                                                                                                                                                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Précision de mesure             | $\leq \pm$ 1,5 % de la plage<br>$\leq \pm$ 2,0 % de la plage avec erreur de température<br>(Y compris non-linéarité, hystéréris, tolérance par rapport au point zéro et à la valeur<br>finale (correspond à la tolérance de mesure selon CEI 61298-2)) |
| Non-reproductibilité            | $\leq \pm 0.2$ % de la plage                                                                                                                                                                                                                           |
| Plage de températures assignées | 10 °C +60 °C                                                                                                                                                                                                                                           |

Tableau 10 : Performance

## 9.3 Mécanique/Électronique

| Raccord process                      | 2 x G ¼ <sup>1)</sup><br>PIF 4 mm + G ¼ <sup>2)</sup><br>¼ NPT <sup>3)</sup>                                                                                                      |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Raccordement                         | Connecteur mâle rond M12 x 1, 4 pôles pour 1 sortie de commutation + sortie analogique<br>Connecteur mâle rond M12 x 1, 5 pôles pour 2 sorties de commutation + sortie analogique |
| Tension d'alimentation <sup>4)</sup> | 17 V CC 30 V CC                                                                                                                                                                   |
| Consommation électrique              | 40 mA max. avec L* = 24 V DC.                                                                                                                                                     |
| Durée d'initialisation               | 300 ms                                                                                                                                                                            |
| Matériau du boîtier                  | Boîtier : polycarbonate, clavier : TPE, fixation de rail DIN, : POM, joints : NBR                                                                                                 |
| Sécurité électrique                  | Classe de protection : III                                                                                                                                                        |
|                                      | Protection contre les surtensions : 32 V CC                                                                                                                                       |
|                                      | Protection contre les courts-circuits : $Q_{A'}$ , $Q_{1'}$ , $Q_{2}$ contre M et contre L <sup>+</sup>                                                                           |
|                                      | Protection contre l'inversion de polarité : L* vers M                                                                                                                             |
| Conformité CE                        | Directive CEM : 2004/108 / CE, EN 61326-2-3                                                                                                                                       |
| Certification RoHS                   | Oui                                                                                                                                                                               |
| Certification cULus                  | Oui                                                                                                                                                                               |

<sup>1)</sup> Partie inférieure : filetage interne G ¼, face arrière : filetage interne G ¼, les deux selon DIN ISO 16030 <sup>2)</sup> Partie inférieure : push-in fitting pour flexible pneumatique 4 mm, face arrière : filetage interne G ¼ selon DIN ISO 16030 <sup>3)</sup> Face inférieure : filetage interne NPT ¼"

<sup>4)</sup> Pour l'alimentation électrique, utiliser un circuit à énergie limitée selon UL61010-1 3e éd, section 9.4

| Notice d'instruction | Caractéristiques techniques                                                    | PAC50 |
|----------------------|--------------------------------------------------------------------------------|-------|
| Indice de protection | IP 65 et IP 67 selon CEI 60529, à l'état enfiché avec une contre-fiche adaptée |       |
| Poids                | env. 40 g                                                                      |       |

Tableau 11 : Mécanique/Électronique

# 9.4 Caractéristiques ambiantes

| Température ambiante    | 0 °C +60 °C                                                                      |
|-------------------------|----------------------------------------------------------------------------------|
| Température de stockage | -20 °C +80 °C                                                                    |
| Humidité relative       | < 90 %                                                                           |
| Résistance aux chocs    | Max. 30 g, xyz, selon DIN EN 60068-2-27 (11 ms, choc mécanique)                  |
| Charge en vibrations    | max. 5 g, xyz, selon CEI 60068-2-6 (10 $\dots$ 150 Hz, vibration sous résonance) |

Tableau 12 : Caractéristiques ambiantes

#### Plans cotés

Dimensions en mm





Illustration 20: PAC50 avec raccord process G1/4"/1/4" NPT





Illustration 21: PAC50 avec Push-in Fitting

#### Schémas cotés accessoires





Illustration 23: Montage du support mural



Illustration 22: Montage dans le tableau de distribution

# 10 Maintenance et nettoyage de l'appareil

- · L'appareil ne nécessite aucune maintenance
- Avant le nettoyage du capteur de pression, le débrancher conformément de l'alimentation en pression et de l'alimentation électrique.
- · Nettoyer uniquement avec un chiffon légèrement humide (solution d'eau savonneuse)
- · Ne pas mettre les raccordements électriques en contact avec l'humidité
- Ne pas utiliser de produit de nettoyage agressif, utilisez par exemple de l'alcool industriel, de l'essence à détacher, des diluants etc.

# 11 Retour

Respecter obligatoirement pour l'envoi de l'appareil :

- Tous les appareils livrés à SICK doivent être exempts de substances dangereuses (acides, lessives, solutions etc.)
- · Pour le retour de l'appareil, utiliser l'emballage d'origine ou un emballage de transport adapté.
- Une déclaration de non-objection complète et signée doit être jointe à l'appareil.
- · La déclaration de non-objection se trouve sur www.sick.com.

# Répertoire des illustrations et des tableaux

| Illustration 1: Durée minimale autorisée T avec une variation de pression maximale ΔpTransport,      | 101 |
|------------------------------------------------------------------------------------------------------|-----|
| Ullustration 2: Fonction d'hystórésis en eas de surprossion                                          | 122 |
| inditiation 2. Fonction d hysteresis en cas de surpression                                           | 123 |
| Illustration 3: Fonction d hysteresis en cas de sous-pression                                        |     |
| Illustration 4: Fonction fenetre                                                                     | 124 |
| Illustration 5: Temporisations                                                                       | 125 |
| Illustration 6: Représentation schématique mesure de fuite                                           | 128 |
| Illustration 7: Zones de l'écran                                                                     | 132 |
| Illustration 8: Montage sur rail DIN                                                                 | 135 |
| Illustration 9: Kit de montage de tableau de distribution                                            | 136 |
| Illustration 10: Kit de montage de tableau de distribution, robuste                                  | 137 |
| Illustration 11: Ouverture dans                                                                      |     |
| le tableau de distribution                                                                           | 138 |
| Illustration 12: Montage avec kit de montage mural                                                   | 138 |
| Illustration 13: Connecteur de pression filetage interne G 1/4                                       | 139 |
| Illustration 14: Raccord enfichable pour tuyau pneumatique 4 mm (Push-In-Fitting, PIF)               | 140 |
| Illustration 15: Filetage interne NPT ¼'                                                             | 141 |
| Illustration 16: Affectation des broches M12 x 1, 4 pôles                                            | 142 |
| Illustration 17: Affectation des broches M12 x 1, 5 pôles                                            | 143 |
| Illustration 18: Comportement de la sortie analogique en cas de panne (1)                            | 157 |
| Illustration 19: Comportement de la sortie analogique en cas de panne (2). « Dépassement » net de la |     |
| tension de sortie de 10 V pour augmenter la robustesse dans l'installation en cas de                 |     |
| tensions résiduelles                                                                                 | 158 |
| Illustration 20: PAC50 avec raccord process G <sup>1</sup> /4''/ <sup>1</sup> /4'' NPT               | 164 |
| Illustration 21: PAC50 avec Push-in Fitting                                                          | 164 |
| Illustration 22: Montage dans le tableau de distribution                                             | 165 |
| Illustration 23: Montage du support mural                                                            | 165 |

| Tableau 1 : Fonctions des boutons                                   |  |
|---------------------------------------------------------------------|--|
| Tableau 2 : Affichage dans les zones de l'écran                     |  |
| Tableau 3 : Affichage dans les zones de l'écran du mode LT          |  |
| Tableau 4 : Affectation des broches après signal de sortie, 4 pôles |  |
| Tableau 5 : Affectation des broches après signal de sortie, 5 pôles |  |
| Tableau 6 : Signaux de sortie Leckage-Tester                        |  |
| Tableau 7 : Défauts et avertissements                               |  |
| Tableau 8 : Comportement des sorties numériques en cas d'erreur     |  |
| Tableau 9 : Caractéristiques                                        |  |
| Tableau 10 : Performance                                            |  |
| Tableau 11 : Mécanique/Électronique                                 |  |
| Tableau 12 : Caractéristiques ambiantes                             |  |

#### Australia Phone +61 (3) 9457 0600 1800 33 48 02 - tollfree Austria Phone +43 (0) 2236 62288-0 Belgium/Luxembourg Phone +32 (0) 2 466 55 66 Brazil Phone +55 11 3215-4900 Canada Phone +1 905.771.1444 Czech Republic Phone +420 234 719 500 Chile Phone +56 (2) 2274 7430 China Phone +86 20 2882 3600 Denmark Phone +45 45 82 64 00 Finland Phone +358-9-25 15 800 France Phone +33 1 64 62 35 00 Germany Phone +49 (0) 2 11 53 010 Greece Phone +30 210 6825100 Hong Kong Phone +852 2153 6300 Hungary Phone +36 1 371 2680 India Phone +91-22-6119 8900

#### Israel Phone +972 97110 11 Italy +39 02 27 43 41 Phone Japan Phone +81 3 5309 2112 Malavsia Phone +603-8080 7425 Mexico Phone +52 (472) 748 9451 Netherlands Phone +31 (0) 30 229 25 44 New Zealand Phone +64 9 415 0459 0800 222 278 - tollfree Norway Phone +47 67 81 50 00 Poland Phone +48 22 539 41 00 Romania Phone +40 356-17 11 20 Russia Phone +7 495 283 09 90 Singapore Phone +65 6744 3732 Slovakia Phone +421 482 901 201 Slovenia Phone +386 591 78849 South Africa Phone +27 10 060 0550 South Korea Phone +82 2 786 6321/4

Spain Phone +34 93 480 31 00 Sweden Phone +46 10 110 10 00 Switzerland Phone +41 41 619 29 39 Taiwan Phone +886-2-2375-6288 Thailand Phone +66 2 645 0009 Turkey Phone +90 (216) 528 50 00 United Arab Emirates Phone +971 (0) 4 88 65 878 United Kingdom Phone +44 (0)17278 31121 USA Phone +1 800 325 7425 Vietnam Phone +65 6744 3732

Detailed addresses and further locations at www.sick.com

