TECHNICAL INFORMATION

EFI – Enhanced Function Interface

Safe SICK device communication

This document is protected by the law of copyright, whereby all rights established therein remain with the company SICK AG. Reproduction of this document or parts of this document is only permissible within the limits of the legal determination of Copyright Law. Alteration or abridgement of the document is not permitted without the explicit written approval of the company SICK AG.

Contents

1	About	this docu	ıment	5
	1.1	Functio	n of this document	5
	1.2	Abbrevia	ations used	5
	1.3	Symbols	s used	5
2	On saf	ety		6
	2.1	General	safety notes and protective measures	6
3	Rasics			7
5	3.1		with EFI	
	3.2		n expansion by connecting ESPE	
	3.3		n expansion using switching amplifiers	
	3.4		tions with safety controllers	
	3.5		< solutions	
4	Techn	ical realiz	zation	12
-	4.1		change via EFI	
		4.1.1	Addressing	
		4.1.2	Sending and receiving of information	
	4.2		re compatibility of the EFI devices	
		4.2.1	C4000 safety light curtain	
		4.2.2	M4000 multiple light beam safety device	
		4.2.3	S300/S3000 safety laser scanners	
	4.3	Descrip	tion of the bytes and bits of the EFI communication	
		4.3.1	Bytes of the EFI communication	
	4.4	Status i	nformation and control options for the EFI devices	
		4.4.1	C4000 safety light curtain	26
		4.4.2	M4000 multiple light beam safety device	28
		4.4.3	S3000 safety laser scanner	29
		4.4.4	S300 safety laser scanner	32
		4.4.5	S300 Mini safety laser scanner	34
		4.4.6	Flexi Soft FX3-CPU1, -CPU2, -CPU3 safety controller	36
		4.4.7	UE4740 EFI gateway	37
	4.5	Applicat	tion examples	
		4.5.1	EFI gateway with M4000 multiple light beam safety device	38
		4.5.2	EFI gateway with M4000 and UE403 switching amplifier	39
		4.5.3	EFI gateway with two S3000 safety laser scanners	40
		4.5.4	EFI gateways with S3000 or S300 host/guest systems with	
			local inputs	
		4.5.5	EFI gateway with two S300 safety laser scanners	
		4.5.6	EFI gateway with safety controllers	42
		4.5.7	Flexi Soft safety controller with M4000 multiple light beam	
			safety device	
		4.5.8	Flexi Soft safety controller with two S3000 or S300 Mini	44
		4.5.9	Flexi Soft safety controller with S3000 or S300 host/guest	
			system (with local inputs)	44

5	Config	uration o	ptions via EFI	47
	5.1		roups with one EFI string	
		5.1.1	Cascaded system with the safety light curtain C4000	
		5.1.2	Host/guest system with the S300/S300 Mini/S3000 safety	
			laser scanners	48
		5.1.3	M4000 with UE403 switching amplifier	48
		5.1.4	Safety controller with one ESPE	49
		5.1.5	EFI gateway with ESPE(s) connected	49
	5.2	Device g	roups with two EFI strings	50
		5.2.1	Safety controller with two ESPE	50
		5.2.2	EFI gateway with safety controller and ESPE connected	51
		5.2.3	EFI gateway with two safety controllers with ESPE connected	52
6	Techni	cal speci	fications	54
	6.1	Electrica	I installation	54
	6.2	Interface	9S	54
7	Annex			55
	7.1	List of ta	ables	55
	7.2	List of ill	ustrations	55

1

About this document

Please read this chapter carefully before working with the technical description.

1.1 Function of this document

This technical information gives you an overview of the possibilities, expanded functionality and the technical implementation of safety-related applications with the Enhanced Function Interface from SICK AG.

1.2 Abbreviations used

- CDS SICK Configuration & Diagnostic Software
- EDM External device monitoring
- **EFI** Enhanced function interface = safe SICK device communication

ESPE Electro-sensitive protective equipment (e.g. C4000, S300)

- (F)PLC (Fail-safe) Programmable logic controller
- **OSSD** Output signal switching device = signal output that drives the safety circuit

1.3 Symbols used

instructions for action.

Refer to notes for special features of the device.

➤ Take action ...

Note

Warning!

A warning indicates an actual or potential risk or health hazard. They are designed to help you to prevent accidents.

Instructions for taking action are shown by an arrow. Read carefully and follow the

Read carefully and follow the warning notices!

Software notes show the location in the CDS (Configuration & Diagnostic Software) where you can make the appropriate settings and adjustments. In the CDS open the menu **View**, **Dialog box** and select the item **File Cards** to go straight to the stated dialog fields. Alternatively, the software wizard will guide you through the appropriate setting.

2

EFI

On safety

2.1 General safety notes and protective measures

Use the related operating instructions for the devices!

This technical information does not replace the operating instructions for the ESPE, safety controllers or the EFI gateway described in the following.

These operating instructions are to be made available to the operator of the system, machine or vehicle on which an ESPE, a safety controller or an EFI gateway is used. The operator is to be instructed in the use of the device by qualified safety personnel and must be instructed to read and observe the operating instructions.

3

Basics

This chapter describes the possibilities offered by the Enhanced Function Interface (EFI).

The Enhanced Function Interface (EFI) was developed to implement safe communication between ESPE, Flexi Soft modular safety controller or EFI gateway.

However, EFI is more than an interface for connecting together SICK devices. EFI expands the functionality of the individual protective devices.

Using protective devices connected with EFI, safety-related applications can be implemented that would otherwise only be possible with a large amount of circuitry or extensive installation effort. These applications include, for example, simultaneous protective field monitoring using the S3000 safety laser scanner, operating mode switching on the C4000 or sampling status signals (e.g. for a contaminated front screen).

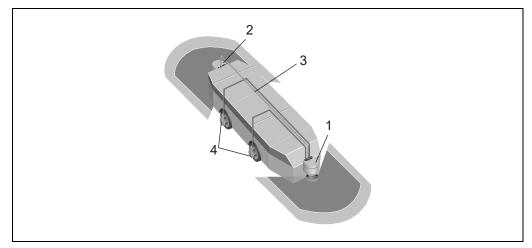
Status and control information is exchanged between devices via EFI. The applications can be integrated into higher level bus systems using EFI gateways.

In addition the concurrent configuration of the devices in a project is possible.

You will find the advantages of EFI in SICK safety systems only.

3.1 Devices with EFI

The following product families are equipped with EFI:


- M4000 multiple light beam safety device: Advanced, Area
- UE403 switching amplifier
- C4000 safety light curtain: Standard, Advanced, Entry/Exit, Palletizer, Fusion, Standard Guest, Advanced Guest
- M4000 multiple light beam safety device: Standard Curtain, Advanced Curtain
- UE402 switching amplifier
- S3000 safety laser scanner: Standard, Advanced, Professional, Expert, Remote, Cold Store, Anti Collision
- S300 safety laser scanner: Standard, Advanced, Professional, Expert
- S300 Mini safety laser scanner: Remote
- UE4740 EFI gateway
- Flexi Soft FX3-CPU1, -CPU2, -CPU3 modular safety controller

3.2 Function expansion by connecting ESPE

By connecting together individual ESPE via EFI additional applications become possible.

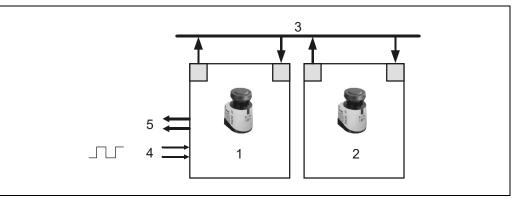

Example 1: Two S300 in host/guest operation

Fig. 1: Velocity-dependent vehicle monitoring for bidirectional travel

The S300 safety laser scanners are connected to a host/guest system via an EFI connection. It is then possible, for instance, to realize vehicle monitoring in two directions of movement.

The guest (2) receives the incremental encoder values (4) from the host (1) over the EFI interface (3). It monitors the areas for the second direction of travel as a function of the velocity. As soon as there is an object in the protective field, it switches the OSSDs on the host via the EFI interface to the OFF state (5).

Advantages:

- less configuration effort:
 - central interface for the configuration of the system
 - concurrent monitoring case switching
- · less wiring costs:
 - The cables for the input signals only need to be connected to the host.
 - One pair of OSSDs is sufficient for the entire system.
- simplified diagnostics on the host/guest system:
 - combined error messages
 - central interface for system diagnostics

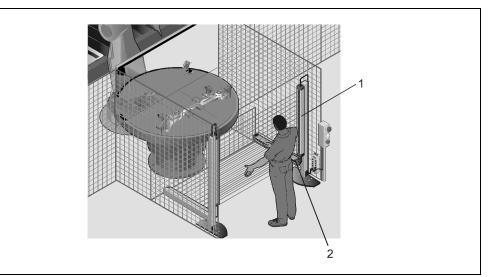
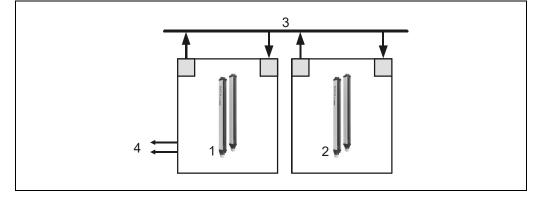

Fig. 2: Principle of the S300 host/guest system

Fig. 3: Hazardous point protection with presence


EFI

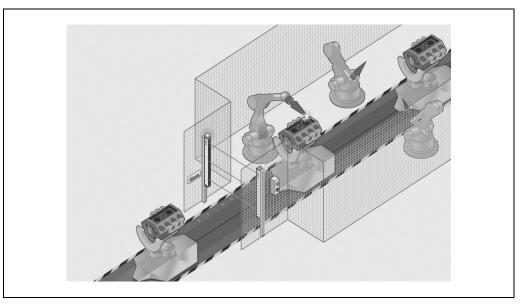
detection

Example 2: Two C4000 in operation as a cascaded system

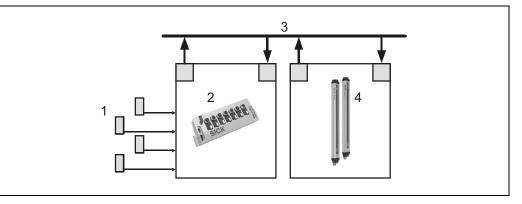
Two C4000 safety light curtains form a cascaded system. The C4000 Host (1) performs the actual hazardous point protection on a press. The C4000 Guest (2) performs the presence detection. The two C4000 are connected together using EFI. The OSSDs on the C4000 Host are integrated into the machine controller (4). If the protective field of the C4000 Guest is interrupted by standing behind or by an attempt at crawling beneath/reaching under, the OSSDs on the C4000 Host are switched via EFI (3) to the OFF state.

Advantages:

- Up to three safety light curtains can be connected to each other.
- No additional external circuitry required. Quick to connect.
- Resolution and protective field height may differ among the individual systems.


Fig. 4: Principle of the cascaded C4000 system

3.3 Function expansion using switching amplifiers


Using the UE402 switching amplifiers for C4000 and UE403 for M4000 the functionality of the C4000 safety light curtains and the M4000 multiple light beam safety devices can be expanded.

Example: Muting with M4000 and UE403

Fig. 5: Access protection with muting

Two pairs of inductive muting sensors (1) connected to the UE403 detect the transport platform. The UE403 switching amplifier (2) transmits signals via EFI (3) to the M4000 multiple light beam safety device (4) and controls the muting function.

Advantages:

- · less wiring due to local connection of all signals
- less wiring between switching amplifier and ESPE due to EFI

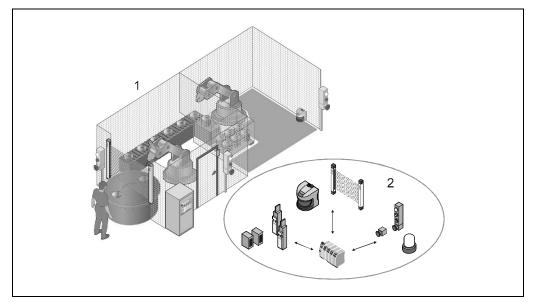
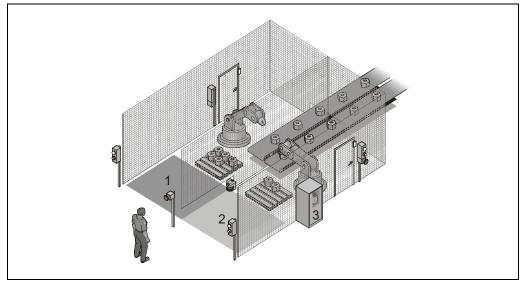

Fig. 6: Principle of the M4000 muting system

Fig. 7: Safety application with a Flexi Soft safety controller


EFI

3.4 Applications with safety controllers

Complex safety applications can be solved specifically using safety controllers.

In the insertion station with rotary table shown and the downstream robot station (1) all the safety-related functions (hazardous point protection, hazardous area protection, door contacts, emergency stop, restart) are realized using a Flexi Soft safety controller (2). The ESPE are integrated into the safety application via EFI.

One S3000 simultaneously monitors two protective fields (1 and 2). Via EFI it signals the states of the protective fields to the Flexi Soft safety controller (3). The safety controller has two OSSDs for separate safe shut down. The related industrial robot is shut down by an object in one of the protective fields. The second station continues to operate. Advantages:

- all safety-relevant functions in one application
- one ESPE saved due to simultaneous protective field monitoring
- increased availability of the system, as only the robots related to the hazardous situation are stopped and not the complete system

Fig. 8: Simultaneous protective field monitoring with S3000 and a safety controller

3.5 Network solutions

By integrating ESPE with the aid of the EFI gateway it is possible to bidirectionally transmit configuration, status and diagnostics functions from the ESPE to the bus system PROFINET IO PROFISATE.

Using the EFI gateway, one or more ESPE or even entire applications realized with safety controllers can be integrated into, for example, an (F)PLC.

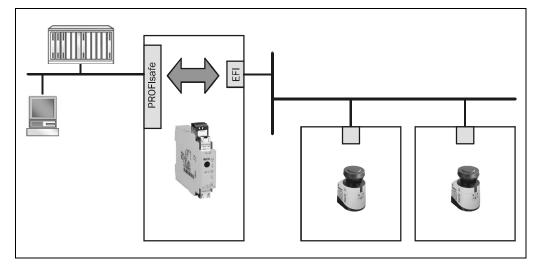
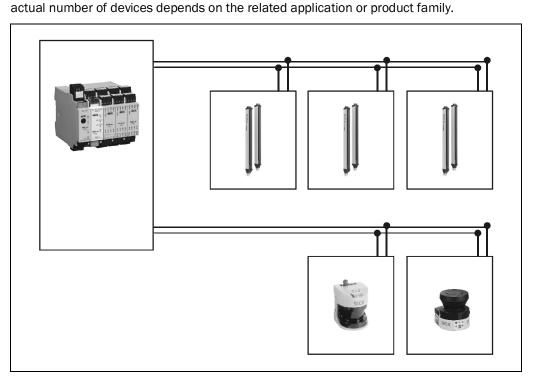



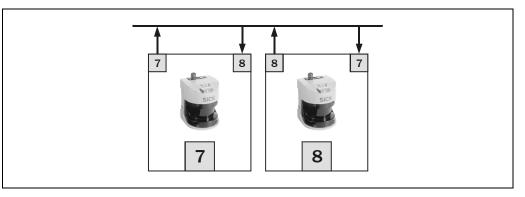
Fig. 9: Integration of two S300 in host/guest operation into a bus system

4

Technical realization

Fig. 10: Safety controller with ESPE connected via two EFI strings

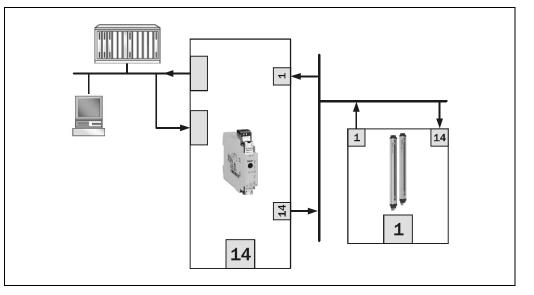
EFI is a linear bus system. Up to four devices can be connected to this bus system. The


Twisted-pair cable with a characteristic impedance of $108 \dots 132 \Omega$ is used as the bus medium (see also chapter 6 "Technical specifications" on page 54).

S3000

Fig. 11: Example data exchange between two

4.1 Data exchange via EFI


To enable data to be exchanged via EFI, each device connected has a unique address.

In the example the S3000 Host has the address 7, the S3000 Guest the address 8. The host receives via address 8 the status information on the OSSDs and the diagnostics messages from the guest on contamination. The guest however receives the incremental encoder values from the host over the address 7.

The safety controllers receive via these addresses status information on the electrosensitive protective devices (C4000, S3000 etc.) or they control functions on the ESPE via these addresses (muting, operating mode switching etc.).

If an EFI system is connected via an EFI gateway to a PROFINET IO, these data can be forwarded to an (F)PLC or control tasks performed by the (F)PLC.

In the example the (F)PLC can write data to the M4000 via the routing in the EFI gateway (address 14). I.e. muting signals can be simulated by the control system. Conversely, status information including the output information from the M4000 (address 1) can be transferred to the (F)PLC via the routing in the EFI gateway.

Fig. 12: Example data exchange between an (F)PLC and an M4000 via an EFI gateway

4.1.1 Addressing

The SICK product families have the following addresses on the EFI:

Product families	Device address
C4000 receiver (Host)	1
C4000 receiver (Guest 1)	2
C4000 receiver (Guest 2)	3
C4000 sender (Host)	4
C4000 sender (Guest 1)	5
C4000 sender (Guest 2)	6
M4000 receiver	1
M4000 sender	4
S3000 (Host/Guest)	7/8
S300 (Host/Guest)	7/8
S300 Mini (Host/Guest)	7/8
UE402	14
UE403	11/12/13/14
Flexi Soft FX3-CPU1, -CPU2, -CPU3	11/12/13/14
UE4740 EFI gateway	13/14

Tab. 1: Product family addresses on the EFI

Notes • Devices with the same address cannot be operated on the EFI at the same time.

• If there are several C4000 safety light curtains on the EFI string, the addresses for the cascaded system are assigned automatically.

The addresses are saved in non-volatile memory in the device memory in the C4000. The device can no longer be used as a standalone device or in a different system position.

Reset the system position saved in the C4000 using the CDS configuration software or using the Host-Guest Plug available as an accessory.

- In an EFI system with two safety laser scanners, set the address of one of the scanners to guest! The procedure for addressing is described in the related operating instructions in the chapter "Electrical installation" (S300 Mini, S300, S3000).
- For the UE4740 EFI gateway, the UE403 and the Flexi Soft FX3-CPU1, -CPU2, -CPU3 the EFI device address can be modified using CDS or Flexi Soft Designer.

To change the addresses of the EFI gateway, connect to the EFI gateway in the CDS. Right click the symbol for the EFI gateway and on the context menu choose **Operate** service/gateway with control system.

To change the addresses of the Flexi Soft FX3-CPU1, -CPU2, -CPU3, connect to the Flexi Soft Designer and the CPU. Right click the symbol for the CPU, a menu then appears where you can select the required EFI device address.

FFI

4.1.2 Sending and receiving of information

Send

Each device sends exactly one item of status information with a length of up to 26 bits of data (C4000 and M4000 senders do not provide any information, this is provided by the C4000 or M4000 receivers).

The status information is not addressed to a specific user on the EFI string, i.e. all users on the EFI string can receive the status information.

Receive

The product families differ in the number of items of status information received.

The maximum number of items of status information received and their addresses are listed in the following table by product family. The table shows the items of status information received per EFI string.

Product family	Device address	Max. number of items of status information received	Device addresses from which items of status information are received
M4000 receiver	1	1	11, 12, 13 or 14
C4000 receiver (Host)	1	3	2, 3 and 14
C4000 receiver (Guest 1)	2	-	-
C4000 receiver (Guest 2)	3	-	-
S3000 (Host)	7	1	8, 13 or 14
S3000 (Guest)	8	1	7, 13 or 14
S300 (Host)	7	1	8, 13 or 14
S300 (Guest)	8	1	7, 13 or 14
S300 Mini (Host)	7	1	13 or 14
S300 Mini (Guest)	8	1	7, 13 or 14
UE402	14	1	1
UE403	14	1	1
Flexi Soft FX3-CPU1, -CPU2, -CPU3	11-14	3	1-8, 11-14
UE4740 EFI gateway	13/14	3	1-8, 13/14

 The maximum number of items of status information received defines the number of devices from which a device can receive information (e.g. C4000 Host from the two guests and a safety controller).

 The devices addresses in column 4 define the devices to which a device can be connected. The C4000 Host receives, e.g., only the addresses 2 and 3 (C4000 Guests) and 14 (safety controllers or EFI gateways). The connection of an M4000 (1) or an S3000 (7) is not possible.

• Also pay attention to the information given in section 4.2 "Firmware compatibility of the EFI devices" on page 17.

Tab. 2: Maximum number of items of status information received

C4000 sender

Exit

V6.00 V6.00

√

√

×

x ×

C4000 Palletizer

✓

✓

×

Firmware compatibility of the EFI devices 4.2

The following tables show which ESPE can be connected to which device.

C4000 receiver

4.2.1 C4000 safety light curtain

C4000 Strd./Adv. C4000 Advanced C4000 Standard C4000 Strd./Adv. C4000 Advanced C4000 Standard C4000 Guest C4000 Guest C4000 Guest C4000 Standard/Advanced C4000 Standard/Advanced C4000 Standard/Advanced C4000 Palletizer II C4000 Entry/Exit C4000 Advanced C4000 Advanced C4000 Advanced C4000 Standard C4000 Standard C4000 Palletizer C4000 Standard C4000 Fusion C4000 Entry/ C4000 Guest V3.31 V3.31 V3.31 V3.31 V3.31 V5.05 V5.05 V6.11 V7.21 V3.33 V6.00 V6.00 V6.00 V3.31 Firm-Firmware ware Flexi Soft V1.00 V1.00 √ ? √ ~ √ ~ 1 ~ ~ √ ~ ~ ~ ~ **UE4740** V1.11 V1.11 √ √ √ \checkmark √ √ √ √ √ √ \checkmark ? √ √ √ **UE402** V1.10 ~ ~ √ ~ √ ~ √ √ ✓ ? × × × UE403 -× × × × × × × × × × × _ × × ×

Legend

- Possible ⁄
- × Not possible
- ? On request

Tab. 3: Firmware compatibility C4000/UE devices

4.2.2 M4000 multiple light beam safety device

		M4000	receiver		M	4000 seno	ler
			UE403				
		M4000 Advanced M4000 Advanced Curtain M4000 Advanced A/P M4000 Area	M4000 Advanced M4000 Advanced Curtain M4000 Advanced A/P M4000 Area		M4000 Advanced Curtain	M4000 Advanced	M4000 Area
	Firm- ware	V1.50	V1.50	Firm- ware	V1.10	V1.10	V1.10
Flexi Soft	V1.11	\checkmark	\checkmark	V1.00	~	✓	\checkmark
UE4740	V1.12	✓	✓	V1.11	~	✓	✓
UE402	-	×	×	-	×	×	×
UE403	V1.51	✓	×	-	×	×	×

Legend

✓ Possible

✗ Not possible

Tab. 4: Firmware compatibility M4000/UE devices Tab. 5: Firmware compatibility S300/S3000/UE devices

EFI

4.2.3 S300/S3000 safety laser scanners

				on				Standalone device on an EFI partner device							0	n ai			Gue		evic	е	
			ity mode											Guest	S3000 Anti Collision	S3000	S3000 Coldstore	S300	S300	S300 Mini Remote	S300 Mini Remote, S3000 or S300	S3000, S300, S300 Mini Remote	S300, S300 Mini Remote
		S3000 in compatibility mode	S3000 Coldstore in compatibility mode	S300 in compatibility mode	S3000 in compatibility mode	S3000 Coldstore in compatibility mode	S300 i in compatibility mode	S300 Mini Remote	S300	S3000 Coldstore	S3000 Anti Collision	S3000		Host	S3000 Anti Collision	S3000	S3000 Coldstore	S300	S3000 or S300	S300 Mini Remote	S3000 Expert	S3000	S300
Flexi Soft	V1.00	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	V1.11		✓	✓	✓	✓	✓	✓	✓	✓	✓
UE4740	V1.11	✓	\checkmark	✓	✓	✓	✓	✓	✓	~	✓	✓	V1.11		~	✓	>	\checkmark	✓	\checkmark	~	>	✓
UE402	-	×	×	×	×	×	×	×	×	×	×	×	-		×	×	×	×	×	×	×	×	×
UE403	-	×	×	×	×	×	×	×	×	×	×	x	-		x	×	x	x	×	x	x	x	×

Legend

- ✓ Possible
- ✗ Not possible
- **Note** Compatibility with the S3000 is provided if the sensor head as well as the I/O module have a serial number of 1221XXX or later.

4.3 Description of the bytes and bits of the EFI communication

Byte	Description
Byte 0	General data
Byte 1	General and device-specific data
Byte 2	Device specific data
Byte 3	Device specific data
Byte 4	CRC LB ¹⁾
Byte 5	CRC HB ²⁾

4.3.1 Bytes of the EFI communication

 $\overset{1)}{}$ CRC (covers data and device code) Low Byte.

²⁾ CRC (covers data and device code) High Byte.

Tab. 6: Bytes of the EFI communication

Byte 0	0.0 ³⁾	0.1 ³⁾	0.2 ³⁾	0.3	0.4	0.5	0.6	0.7
General	Dynamic Counter	Dynamic Counter	Dynamic Counter	OSSD1	OSSD2	Warning Field 1	Weak (pollution warning)	Reset Switch Input (button pressed)
C4000 receiver	Dynamic Counter	Dynamic Counter	Dynamic Counter	OSSD1 (HW OSSD State)	OSSD2 (virtual)	Not used	Weak (pollution warning)	Reset Switch Input
M4000 receiver	Dynamic Counter	Dynamic Counter	Dynamic Counter	OSSD1 (HW OSSD State)	OSSD2 (virtual)	Not used	Weak (pollution warning)	Reset Switch Input ≥V01.20 Reset/RES/ OVR Switch Input (MI2)
S3000 in compatibility mode ⁴⁾	Dynamic Counter	Dynamic Counter	Dynamic Counter	0SSD S3000_1	0SSD S3000_2	Status Warning Field	Weak (pollution warning)	Reset (button pressed)
S3000	Dynamic Counter	Dynamic Counter	Dynamic Counter	OSSD	Speed Valid	Status Warning Field 1	Weak (pollution warning)	Reset (button pressed)
S3000 Anti Collision	Dynamic Counter	Dynamic Counter	Dynamic Counter	OSSD	Speed Valid	Not used	Weak (pollution warning)	Reset (button pressed)
S300 in compatibility mode ⁴⁾	Dynamic Counter	Dynamic Counter	Dynamic Counter	0SSD S300_1	0SSD S300_2	Status Warning Field 1	Weak (pollution warning)	Reset (button pressed)
S300	Dynamic Counter	Dynamic Counter	Dynamic Counter	OSSD	Speed Valid	Status Warning Field	Weak (pollution warning)	Reset (button pressed)
S300 Mini	Dynamic Counter	Dynamic Counter	Dynamic Counter	Not used	Not used	Status Warning Field	Weak (pollution warning)	Not used
UE402	Dynamic Counter	Dynamic Counter	Dynamic Counter	0	0	Input Pin B1 conditional Override (identical to bit info tech in terminal status)	Input Pin B2 conditional Override (identical to bit info tech in terminal status)	0
UE403	Dynamic Counter	Dynamic Counter	Dynamic Counter	0	0	Not used (Input Pin B1 Bypass)	Not used (Input Pin B2 Bypass)	RES/OVR Switch Input (UI2)
UE4740	Dynamic Counter	Dynamic Counter	Dynamic Counter	Byte 0, Bit 3	Byte 0, Bit 4	Byte 0, Bit 5	Byte 0, Bit 6	Byte 0, Bit 7
Flexi Soft	Dynamic Counter	Dynamic Counter	Dynamic Counter	Byte 0, Bit 3	Byte 0, Bit 4	Byte 0, Bit 5	Byte 0, Bit 6	Byte 0, Bit 7

Tab. 7: Byte 0 of the EFI communication

³⁾

Bit is device internal predefined. Read only. For information on the compatibility mode see the operating instructions for the devices. 4)

_	_	-
F	c	
E	Г	
_	•	•

Description of bit 0 to 7 of byte 1

Byte 1	1.0	1.1 ⁵⁾	1.2 ⁶⁾	1.3 ⁶⁾	1.4	1.5	1.6	1.7
General	Reset Required (Reset Lamp)	I/O error	Diagnostic classification	Diagnostic classification	Specific device data	Specific device data	Specific device data	Specific device data
C4000 receiver	Reset Required State	I/O error	Diagnostic classification	Diagnostic classification	User Modes	User Modes	User Modes	EStop status
M4000 receiver	Reset Required State	I/O error	Diagnostic classification	Diagnostic classification	Not used	Not used	Not used	C1/CBS Switch Input (MI1)
S3000 in compatibility mode ⁷⁾	Reset Required (Reset Lamp)	I/O error	Diagnostic classification	Diagnostic classification	Input Pin A1	Input Pin A2	Input Pin B1	Input Pin B2
S3000	Reset Required (Reset Lamp)	I/O error	Diagnostic classification	Diagnostic classification	Input Pin A1	Input Pin A2	Input Pin B1	Input Pin B2
S3000 Anti Collision	Reset Required (Reset Lamp)	I/O error	Diagnostic classification	Diagnostic classification	Input Pin A1	Input Pin A2	Input Pin B1	Input Pin B2
S300 in compatibility mode ⁷⁾	Reset Required (Reset Lamp)	I/O error	Diagnostic classification	Diagnostic classification	Input Pin A1	Input Pin A2	Input Pin B1	Input Pin B2
S300	Reset Required (Reset Lamp)	I/O error	Diagnostic classification	Diagnostic classification	Input Pin A1/ Input Pin C1 ⁸⁾	Input Pin A2/ Input Pin C2 ⁸⁾	Input Pin B1	Input Pin B2
S300 Mini	Not used	I/O error	Not used	Not used	Not used	Not used	Not used	Not used
UE402	0	I/O error	Diagnostic classification	Diagnostic classification	Input Pin A1	Input Pin A2	Input Pin A3	Input Pin A4
UE403	Muting/Over- ride Lamp Error Status	I/O error	Diagnostic classification	Diagnostic classification	Not used (Input Pin A1)	Not used (Input Pin A2)	Not used (Input Pin A3)	Not used (Input Pin A4)
UE4740	Byte 1, Bit 0	Byte 1, Bit 1 (I/O Error)	Diagnostic classification	Diagnostic classification	Byte 1, Bit 4	Byte 1, Bit 5	Byte 1, Bit 6	Byte 1, Bit 7
Flexi Soft	Byte 1, Bit 0	Byte 1, Bit 1 (I/O Error)	Diagnostic classification	Diagnostic classification	Byte 1, Bit 4	Byte 1, Bit 5	Byte 1, Bit 6	Byte 1, Bit 7

Tab. 8: Byte 1 of the EFI communication

- ⁵⁾ The bit cannot be freely used.
 ⁶⁾ Bit is device internal predefined. Read only.
- 7) For information on the compatibility mode see the operating instructions for the devices. Configuration dependent: Without speed routing/with speed routing. 8)

Byte 2	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7
General	Specific device data	Specific device data	Specific device data	Specific device data	Specific device data	Specific device data	Specific device data	Specific device data
C4000 receiver	Teach-In active	Key-Switch state	Take snapshot	Field status (red/green)	Field status	Field status	EStop Channel 1	EStop Channel 2
M4000 receiver	Not used	Not used	Not used	Not used	Not used	Not used	Not used	Not used
S3000 in compatibility mode ⁷⁾	Input Pin C1	Input Pin C2	Input Pin D1	Input Pin D2	Not used	Not used	Not used	Not used
S3000	Input Pin C1/ Speed Bit 0 ⁹⁾	Input Pin C2/ Speed Bit 1 ⁹⁾	Input Pin D1/ Speed Bit 2 ⁹⁾	Input Pin D2/ Speed Bit 3 ⁹⁾	Speed Bit 4	Speed Bit 5	Speed Bit 6	Speed Bit 7
S3000 Anti Collision	Input Pin C1/ Speed Bit 0 ⁹⁾	Input Pin C2/ Speed Bit 1 ⁹⁾	Input Pin D1/ Speed Bit 2 ⁹⁾	Input Pin D2/ Speed Bit 3 ⁹⁾	Speed Bit 4	Speed Bit 5	Speed Bit 6	Speed Bit 7
S300 in compatibility mode ⁷⁾	Input Pin C1	Input Pin C2	Not used	Not used	Not used	Not used	Not used	Not used
S300	Input Pin C1/ Speed Bit 0 ⁹⁾	Input Pin C2/ Speed Bit 1 ⁹⁾	Speed Bit 2	Speed Bit 3	Speed Bit 4	Speed Bit 5	Speed Bit 6	Speed Bit 7
S300 Mini	Not used	Not used	Not used	Not used	Not used	Not used	Not used	Not used
UE402	Input Pin A5	Input Pin A6	Input Pin A7	Input Pin A8	0	0	0	0
UE403	Not used (Input Pin A5)	Not used (Input Pin A6)	Not used (Input Pin A7)	Not used (Input Pin A8)	Muting Sensor A1	Muting Sensor A2	Muting Sensor B1	Muting Sensor B2
UE4740	Byte 2, Bit 0	Byte 2, Bit 1	Byte 2, Bit 2	Byte 2, Bit 3	Byte 2, Bit 4	Byte 2, Bit 5	Byte 2, Bit 6	Byte 2, Bit 7
Flexi Soft	Byte 2, Bit 0	Byte 2, Bit 1	Byte 2, Bit 2	Byte 2, Bit 3	Byte 2, Bit 4	Byte 2, Bit 5	Byte 2, Bit 6	Byte 2, Bit 7

Description of bit 0 to 7 of byte 2

Tab. 9: Byte 2 of the EFI communication

⁹⁾ Configuration dependent: Without speed routing/with speed routing.

22

Description of bit 0 to 7 of byte 3

Byte 3	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7
General	Specific device data	Specific device data	Specific device data	Specific device data	Specific device data	Specific device data	Specific device data	Specific device data
C4000 receiver	ADO ¹⁰⁾	CoState Bypass State	Not used	Not used	Not used	Not used	Virtual photoelectric switch 2	Virtual photoelectric switch 1
M4000 receiver	ADO ¹⁰⁾	Not used	Muting State	Muting Lamp status	Delivery Status Flag	PU Data Valid Flag	Mode Switch state on PU	Select Switch state on PU
S3000 in compatibility mode ¹¹⁾	Not used	Not used	Not used	Not used	Switch off 1. monitoring area	Status Warning Field 1. monitoring area	Switch off 2. monitoring area	Status Warning Field 2. monitoring area
S3000	Speed Bit 8	Speed Bit 9	Speed Bit 10	Speed Bit 11	Protective Field 1/ Protective Field 1/ Protective Field 1 ¹²	Warning Field 1/ Protective Field 2/ Warning Field 1 ¹²⁾	Sim. Protective Field 1/Sim. Protective Field 1/- ¹²⁾	Warning Field 2/Sim. Protective Field 2/ Warning Field 2 ^{f2)}
S300 Anti Collision	Speed Bit 8	Speed Bit 9	Speed Bit 10	Speed Bit 11	Protective Field 1/ Protective Field 1 ¹³⁾	Collision Protection Field 1 / Collision Protection Field ¹³⁾	Sim. Protective Field 1/- ¹³⁾	Sim. Collision Protection Field 1/ Collision protection field 2 ¹³⁾
S300 in compatibility mode ¹¹⁾	Not used	Not used	Not used	Not used	Switch off 1. monitoring area	Status Warning Field 1. monitoring area	Not used	Not used
S300	Speed Bit 8	Speed Bit 9	Speed Bit 10	Speed Bit 11	Protective Field 1	Warning Field 1	Not used	Warning Field 2
S300 Mini	Not used	Not used	Not used	Not used	Protective Field 1	Warning Field 1	Not used	Warning Field 2
UE402	Lock-out Info	Lock-out Info	Lock-out Info	Lock-out Info	Input Pin B1	Input Pin B2	Input Pin B3	Input Pin B4
UE403	Not used	Not used	Not used	Not used	C1/CBS/OVR Switch Input (UI1)			
UE4740	Byte 3, Bit 0	Byte 3, Bit 1	Byte 3, Bit 2	Byte 3, Bit 3	Byte 3, Bit 4	Byte 3, Bit 5	Byte 3, Bit 6	Byte 3, Bit 7
Flexi Soft	Byte 3, Bit 0	Byte 3, Bit 1	Byte 3, Bit 2	Byte 3, Bit 3	Byte 3, Bit 4	Byte 3, Bit 5	Byte 3, Bit 6	Byte 3, Bit 7

Tab. 10: Byte 3 of the EFI communication

¹⁰⁾ ADO can be used for non-safety-related evaluations, e.g. weak signal output.
 ¹¹⁾ For information on the compatibility mode see the operating instructions for the devices.
 ¹²⁾ For information on the compatibility mode see the operating instructions for the devices.

¹²⁾ Dual (1 protective field, 1 warning field)/Dual protective fields (2 protective fields)/Triple (1 protective field, 2 warning fields).

¹³⁾ Dual collision protection (1 protective field, 1 collision protection field)/Triple collision protection (1 protective field, 2 collision protection fields)

Byte 4	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7
General	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte ¹⁴⁾	Low Byte						
C4000 receiver	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
M4000 receiver	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
S3000 in compatibility mode ¹⁵⁾	CRC Low Byte	CRC Low Byte	CRC Low Byte	CRC Low Byte	CRC Low Byte	CRC Low Byte	CRC Low Byte	CRC Low Byte
\$3000	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
S3000 Anti	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
Collision	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
S300 in compatibility mode ¹⁵⁾	CRC Low Byte	CRC Low Byte	CRC Low Byte	CRC Low Byte	CRC Low Byte	CRC Low Byte	CRC Low Byte	CRC Low Byte
S300	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
S300 Mini	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
UE402	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
UE403	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
UE4740	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
Flexi Soft	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte

Description of bit 0 to 7 of byte 4

Tab. 11: Byte 4 of the EFI communication

 $^{14)}_{^{15)}}$ CRC (covers data and device code) Low Byte. $^{^{15)}}$ For information on the compatibility mode see the operating instructions for the devices.

Byte 5	5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7
General	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	High Byte ¹⁶⁾	High Byte						
C4000 receiver	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte
M4000 receiver	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte
S3000 in compatibility mode ¹⁷⁾	CRC High Byte	CRC High Byte	CRC High Byte	CRC High Byte	CRC High Byte	CRC High Byte	CRC High Byte	CRC High Byte
S3000	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
S3000 Anti	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
Collision	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
S300 in compatibility mode ¹⁷⁾	CRC High Byte	CRC High Byte	CRC High Byte	CRC High Byte	CRC High Byte	CRC High Byte	CRC High Byte	CRC High Byte
S300	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
S300 Mini	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte	Low Byte
UE402	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte
UE403	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte
UE4740	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte
Flexi Soft	CRC	CRC	CRC	CRC	CRC	CRC	CRC	CRC
	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte	High Byte

Description of bit 0 to 7 of byte 5

Tab. 12: Byte 5 of the EFI communication

 $^{16)}_{17)}$ CRC (covers data and device code) High Byte. $^{17)}_{17)}$ For information on the compatibility mode see the operating instructions for the devices.

Tab. 13: Status information of the C4000 (data from the

C4000)

EFI

Status information and control options for the EFI 4.4 devices

Status information and control commands are exchanged between the devices via EFI. The following tables show the status information that can be accessed and the control commands that are possible for ESPE, safety controllers as well as EFI gateways.

The information in square brackets reflects the names used in the CDS and in the Note Flexi Soft Designer.

4.4.1 C4000 safety light curtain

Status information	Meaning/effect
OSSD on [OSSD]	Logical 1, if the OSSD of the C4000 is switched on (green)
	 Logical 0, if the OSSD of the C4000 is switched off (red)
	Notes:
	Host: In the case of a cascaded system, the OSSD bit is a group indication for the entire host/guest or host/guest/guest cascade
	Guest 1/guest 2: The OSSD bit corresponds to the status of the related guest.
Contamination [Weak]	Logical 1, on contamination of the front screen
Reset button pressed [Res. Pressed]	Logical 1, if the reset button is pressed
Reset required [Res. Req.]	Logical 1, if reset required
Status of the emergency stop [EStop Active]	Logical 1, if the button connected to the emergency stop input on the C4000 has been pressed.
Teach-in active [Teach Active]	 Logical 1, if a teach-in key-operated switch connected to the C4000 has been operated
Status application diagnostic output (ADO) ¹⁸⁾ [ADO]	• Logical 1, if the configurable application diagnostic output (ADO) on the C4000 is signaling, e.g., the contamination status, the OSSD status or the emergency stop status
	Note: The message type depends on the configuration of the C4000.
Status bypass [Bypass Active]	 Logical 1, if a key-operated pushbutton for bypass connected to the C4000 has been operated
Virtual photoelectric switch 2 [VLS2]	Logical 1 = beam unoccupied
	 Logical 0 = beam interrupted
Virtual photoelectric switch 1 [VLS1]	Logical 1 = beam unoccupied
	 Logical 0 = beam interrupted

Note

With the exception of the OSSD information, all status information always relates to the safety light curtain polled (host, guest 1 or guest 2).

¹⁸⁾ ADO can be used for non-safety-related evaluations, e.g. weak signal output.

Tab. 14: Control features on the C4000 (data **to the** C4000)

Control feature	Meaning/effect
Bypass B1 [In Bypass 1]	Logical 1, stimulates bit B1 for the key- operated pushbutton for bypass
Bypass B2 [In Bypass 2]	Logical 1, stimulates bit B2 for the key- operated pushbutton for bypass
Operating mode 1 [In A1]	• Logical 1, switches to operating mode 1 of the C4000
	• Logical 0, makes it possible to select a different operating mode ¹⁹⁾
Operating mode 2 [In A2]	Logical 1, switches to operating mode 2 of the C4000
	Logical 0, makes it possible to select a different operating mode
Operating mode 3 [In A3]	• Logical 1, switches to operating mode 3 of the C4000
	Logical 0, makes it possible to select a different operating mode
Operating mode 4 [In A4]	• Logical 1, switches to operating mode 4 of the C4000
	Logical 0, makes it possible to select a different operating mode
Operating mode 5 [In A5]	Logical 1, switches to operating mode 5 of the C4000
	Logical 0, makes it possible to select a different operating mode
Operating mode 6 [In A6]	• Logical 1, switches to operating mode 6 of the C4000
	Logical 0, makes it possible to select a different operating mode
Overrun monitoring SCC [In SCC]	• Logical 1, stimulates the SCC bit for overrun monitoring on the C4000
Bottom dead center BDC [In BDC]	• Logical 1, stimulates the BDC bit for PSDI integration on the C4000
Top dead center TDC [In TDC]	• Logical 1, stimulates the TDC bit for PSDI integration on the C4000
I/O error [I/O Error]	Logical 0, if there is no error on a connected device
	Logical 1, if there is an error on a connected device

 $^{\rm 19)}\,$ If two bits are logical 1, there will be an error on the C4000.

EFI

Tab. 15: Status information
of the M4000 (data from the
M4000)

4.4.2 M4000 multiple light beam safety device

Status information	Meaning/effect
OSSD on [OSSD]	Logical 1, if the OSSD of the M4000 is switched on (green)
	 Logical 0, if the OSSD of the M4000 is switched off (red)
Contamination [Weak]	Logical 1, on contamination of the front screen
Reset button pressed [Res. Pressed]	 Logical 1, if the reset button is pressed on the M4000
Reset required [Res. Req.]	Logical 1, if reset required
Status application diagnostic output (ADO) ²⁰⁾ [ADO]	 Logical 1, if the configurable application diagnostic output (ADO) for the M4000 is indicating the contamination status or the OSSD status
Muting status [Muting]	Logical 1, if M4000 muting is active
	Logical 0, if M4000 muting is inactive
Additional signal C1 or Belt stop [In BS/C1]	 Logical 1, if a function is activated on the M4000

Tab. 16: Control features on the M4000 (data **to the** M4000)

Control feature	Meaning/effect
Reset/override [In RES/OVR]	• Logical 1, stimulates the function configured in the M4000
Status muting lamp/override lamp	Logical 1, stimulates an error message for the external muting lamp
Muting Sensor A1 [In A1]	Logical 1, stimulates muting sensor A1 for M4000
Muting Sensor A2 [In A2]	Logical 1, stimulates muting sensor A2 for M4000
Muting Sensor B1 [In B1]	Logical 1, stimulates muting sensor B1 for M4000
Muting Sensor B2 [In B2]	Logical 1, stimulates muting sensor B2 for M4000
Override or Additional signal C1 or Belt stop [In BS/C1]	Logical 1, stimulates the related function configured in the M4000
I/O error [I/O Error]	Logical 0, if there is no error on a connected device
	Logical 1, if there is an error on a connected device

 $^{\rm 20)}$ ADO can be used for non-safety-related evaluations, e.g. weak signal output.

Tab. 17: Status information of the S3000 (data **from the**

EFI

S3000)

4.4.3 S3000 safety laser scanner

Status information	Meaning/effect
OSSD on [OSSD]	• Logical 1, if the internal OSSD of the S3000 is in the ON state (green)
	• Logical 0, if the OSSD of the S3000 is in the OFF state (red)
Warning field bit [WF LED]	Logical 1, if warning field 1 and warning field 2 of the S3000 are unoccupied or not used
Contamination [Weak]	Logical 1, if the front screen is contaminated
Reset required [Res. Req]	Logical 1, if reset required
Reset button pressed [Res. Pressed]	Logical 1, if the reset button is pressed on the S3000
I/O error [I/O Error]	• Logical 0, if there is no error on the S3000
	• Logical 1, if there is an error on the S3000
Control input A1 [In A1]	• Logical 1, if the connection of control input A1 is HIGH ²¹⁾
	Note: The control inputs on the S3000 are used to switch the monitoring cases on the S3000.
Control input A2 [In A2]	Logical 1, if the connection of control input A2 is HIGH ²¹⁾
Control input B1 [In B1]	Logical 1, if the connection of control input B1 is HIGH ²¹⁾
Control input B2 [In B2]	• Logical 1, if the connection of control input B2 is HIGH ²¹⁾
Control input C1 [In C1]	Logical 1, if the connection of control input C1 is HIGH ²¹⁾
Control input C2 [In C2]	• Logical 1, if the connection of control input C2 is HIGH ²¹⁾
Control input D1 [In D1]	Logical 1, if the connection of control input D1 is HIGH ²¹⁾
Control input D2 [In D2]	• Logical 1, if the connection of control input D2 is HIGH ²¹⁾
Allocated protective field unoccupied [PF]	• In dual field mode, in dual protective field mode and in triple field mode and in dual and triple collision protection mode: Logical 1, if the active allocated protective field is unoccupied.

 $^{\rm 21)}\,$ Only if the inputs are activated in the CDS.

	EFI
Status information	Meaning/effect
Allocated warning field unoccupied [WF]	In dual field mode: Logical 1, if the active allocated warning field is unoccupied
or allocated protective field 2 unoccupied [PF2]	 In dual protective field mode: Logical 1, if the active allocated protective field 2 is unoccupied In triple field mode: Logical 1, if the active
Allocated collision protection field unoccupied [CPF1]	 allocated warning field is unoccupied In dual collision protection mode: Logical 1, if active allocated collision protection field is unoccupied In triple collision protection field: Logical 1, if active allocated collision protection field is
Simultaneous protective field unoccupied [Sim. PF]	 unoccupied In dual field mode and in dual protective field mode: Logical 1, if the simultaneously monitored protective field is unoccupied In triple field mode: No function
	 In dual collision protection mode: Logical 1, if the simultaneously monitored protective field is unoccupied In triple collision protection mode: No function
Simultaneous warning field unoccupied [Sim. WF] or simultaneous protective field 2	 In dual field mode: Logical 1, if the simultaneously monitored warning field is unoccupied In dual protective field mode: Logical 1, if the
unoccupied [Sim. PF2] or allocated warning field 2 unoccupied [WF2]	 simultaneously monitored protective field 2 is unoccupied In triple field mode: Logical 1, if the active allocated warning field 2 is unoccupied
Simultaneous collision protection field unoccupied [Sim. CPF] or allocated collision protection field 2 unoccupied [CPF2]	 In dual collision protection field mode: Logical 1, if the simultaneously monitored collision protection field is unoccupied In triple collision protection mode: Logical 1, if the active allocated collision protection field 2 is unoccupied
Velocity valid ²²⁾	 Logical 1, if a valid velocity is present on the incremental encoder inputs Logical 0, if an invalid velocity is present on the incremental encoder inputs
Velocity ²²⁾	 12 bits for the transmission of the velocity 100000110000 = -2000 cm/s 000000000000 = 0 cm/s 011111010000 = +2000 cm/s

 $^{\rm 22)}\,$ Not in the compatibility mode.

Technical realization

Tab. 18: Control features on the S3000 (data **to the** S3000)

Control feature	Meaning/effect
Static input information A1 [In A1]	Logical 1, stimulates control input A1 of the S3000
Static input information A2 [In A2]	 Logical 1, stimulates control input A2 of the S3000
Static input information B1 [In B1]	 Logical 1, stimulates control input B1 of the S3000
Static input information B2 [In B2]	 Logical 1, stimulates control input B2 of the \$3000
Static input information C1 [In C1]	 Logical 1, stimulates control input C1 of the S3000
Static input information C2 [In C2]	 Logical 1, stimulates control input C2 of the S3000
Static input information D1 [In D1]	 Logical 1, stimulates control input D1 of the S3000
Static input information D2 [In D2]	 Logical 1, stimulates control input D2 of the S3000
Static input information E1 [In E1] ²³⁾	 Logical 1, stimulates control input E1 of the S3000
Static input information E2 [In E2] ²³⁾	 Logical 1, stimulates control input E2 of the S3000
Stand-by ²³⁾	 Logical 1, stimulates operational status Stand-by (individually for host and guest)
Velocity valid ²³⁾	 Logical 1, valid velocity is present on the incremental encoder inputs
	 Logical 0, invalid velocity is present on the incremental encoder inputs
Velocity ²³⁾	12 bits for the transmission of the velocity
	100000110000 = -2000 cm/s
	00000000000 = 0 cm/s 011111010000 = +2000 cm/s
I/O error [I/O Error]	 Logical 0, if there is no error on the connected partner device
	 Logical 1, if there is an error on the connected
	partner device

 $^{\rm 23)}\,$ Not in the compatibility mode.

S300)

Tab. 19: Status information of the S300 (data **from the**

EFI

4.4.4 S300 safety laser scanner

Status information	Meaning/effect	
OSSD on [OSSD]	• Logical 1, if the internal OSSD of the S300 is in the ON state (green)	
	Logical 0, if the OSSD of the S300 is in the OFF state (red)	
Warning field bit [WF LED]	 Logical 1, if both warning fields of the S300 are unoccupied 	
	 Logical 0, if one of the warning fields of the S300 is infringed 	
Contamination [Weak]	Logical 1, if the optics cover is contaminated	
Reset required [Res. Req]	Logical 1, if reset required	
Reset button pressed [Res. Pressed]	Logical 1, if the reset button is pressed on the S300	
I/O error [I/O Error]	Logical 0, if there is no error on the S300	
	Logical 1, if there is an error on the S300	
Control input A1 [In A1]	• Logical 1, if the connection of control input A1 is HIGH	
	Note: The control inputs on the S300 are used to switch the monitoring cases on the S300.	
Control input A2 [In A2]	Logical 1, if the connection of control input A2 is HIGH	
Control input B1 [In B1]	Logical 1, if the connection of control input B1 is HIGH	
Control input B2 [In B2]	Logical 1, if the connection of control input B2 is HIGH	
Control input C1 [In C1]	Logical 1, if the connection of control input C1 is HIGH	
Control input C2 [In C2]	Logical 1, if the connection of control input C2 is HIGH	
Protective field [PF]	• Logical 1, if the protective field is unoccupied	
Warning field 1 [WF1]	Logical 1, if the active allocated warning field is unoccupied	
Warning field 2 [WF2]	Logical 1, if the active allocated warning field is unoccupied	
Velocity valid ²⁴⁾	Logical 1, if a valid velocity is present on the incremental encoder inputs	
	Logical 0, if an invalid velocity is present on the incremental encoder inputs	
Velocity ²⁴⁾	12 bits for the transmission of the velocity	
	100000110000 = -2000 cm/s	
	00000000000 = 0 cm/s	
	011111010000 = +2000 cm/s	

 $^{\rm 24)}\,$ Not in the compatibility mode.

Technical realization

Tab. 20: Control features on the S300 (data **to the** S300)

Control feature	Meaning/effect
Static input information A1 [In A1]	 Logical 1, stimulates control input A1 of the S300
Static input information A2 [In A2]	 Logical 1, stimulates control input A2 of the \$300
Static input information B1 [In B1]	 Logical 1, stimulates control input B1 of the S300
Static input information B2 [In B2]	 Logical 1, stimulates control input B2 of the \$300
Static input information C1 [In C1]	 Logical 1, stimulates control input C1 of the S300
Static input information C2 [In C2]	 Logical 1, stimulates control input C2 of the S300
Static input information D1 $[\ln D1]^{25)}$	 Logical 1, stimulates control input D1 of the S300
Static input information D2 [In D2] ²⁵⁾	 Logical 1, stimulates control input D2 of the S300
Static input information E1 [In E1] ²⁵⁾	 Logical 1, stimulates control input E1 of the S300
Static input information E2 [In E2] ²⁵⁾	 Lo gical 1, stimulates control input E2 of the S300
Stand-by ²⁵⁾	 Logical 1, stimulates operational status Stand-by (individually for host and guest)
Velocity valid ²⁵⁾	 Logical 1, valid velocity is present on the incremental encoder inputs
	 Logical 0, invalid velocity is present on the incremental encoder inputs
Velocity ²⁵⁾	12 bits for the transmission of the velocity
	100000110000 = -2000 cm/s
	00000000000 = 0 cm/s 011111010000 = +2000 cm/s
I/O error [I/O Error]	Logical 0, if there is no error on the connected partner device
	Logical 1, if there is an error on the connected partner device

 $^{\rm 25)}\,$ Not in the compatibility mode.

4.4.5 S300 Mini safety laser scanner

Status information	Meaning/effect
Warning field bit [WF]	Logical 1, if both warning fields of the S300 Mini are unoccupied
	 Logical 0, if one of the warning fields of the S300 Mini is infringed
Protective field [PF]	Logical 1, if the protective field is unoccupied
Warning field 1 [WF1]	Logical 1, if the active allocated warning field is unoccupied
Warning field 2 [WF2]	Logical 1, if the active allocated warning field is unoccupied
Contamination [Weak]	Logical 1, if the optics cover is contaminated
I/O error [I/O Error]	• Logical 0, if there is no error on the S300 Mini
	• Logical 1, if there is an error on the S300 Mini

Tab. 21: Status information of the S300 Mini (data **from the** S300 Mini)

Tab. 22: Control features on the S300 Mini (data **to the** S300 Mini)

Control feature	Meaning/effect
Static input information A1 [In A1]	Logical 1, stimulates control input A1 of the S300 Mini
Static input information A2 [In A2]	Logical 1, stimulates control input A2 of the S300 Mini
Static input information B1 [In B1]	Logical 1, stimulates control input B1 of the S300 Mini
Static input information B2 [In B2]	Logical 1, stimulates control input B2 of the S300 Mini
Static input information C1 [In C1]	Logical 1, stimulates control input C1 of the S300 Mini
Static input information C2 [In C2]	Logical 1, stimulates control input C2 of the S300 Mini
Static input information D1 [In D1]	Logical 1, stimulates control input D1 of the S300 Mini
Static input information D2 [In D2]	Logical 1, stimulates control input D2 of the S300 Mini
Static input information E1 [In E1]	Logical 1, stimulates control input E1 of the S300 Mini
Static input information E2 [In E2]	Logical 1, stimulates control input E2 of the S300 Mini
Stand-by	Logical 1, stimulates operational status Stand-by
Velocity valid	• Logical 1 signals a valid velocity being present on the incremental encoder inputs.
	 Logical 0 signals a invalid velocity being present on the incremental encoder inputs (velocity in a range that is not configured or difference allowed between the incremental encoders exceeded).
Velocity ²⁵⁾	12 bits for the transmission of the velocity
	100000110000 = -2000 cm/s 000000000000 = 0 cm/s 011111010000 = +2000 cm/s

the Flexi Soft)

Tab. 23: Status information on the Flexi Soft (data **from**

E	F	L

Status information	Meaning/effect
I/O error [Byte 1, Bit 1]	Logical 0, if there is no error on the Flexi Soft CPU
	Logical 1, if there is an error on the Flexi Soft CPU
	Note: This status is to be provided in the operational status "Executing/Run" on the Flexi Soft-CPU using programmed logic.
	If signals are pre-processed on the Flexi Soft station and forwarded to EFI users, it is necessary to program the error states from this pre-processing as status information. If this status information is not programmed, it is only allowed to send signals without pre-processing to the EFI users.
All except [Byte 1, Bit 1]	Freely programmable signals correspond to the requirements for the EFI devices connected

4.4.6 Flexi Soft FX3-CPU1, -CPU2, -CPU3 safety controller

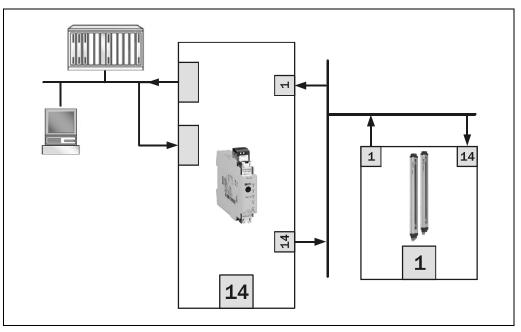
Tab. 24: Control features on the Flexi Soft (data **to the** Flexi Soft)

Control feature	Meaning/effect
I/O error [Byte 1, Bit 1]	 Logical 0, if there is no error on a connected device
	 Logical 1, if there is an error on a connected device
	Note: Indicates that the data on this EFI interface are currently invalid and represent substitute values. This situation occurs, for example, on EFI gateways if the controlling (F)PLC is not (yet) operating.
All except [Byte 1, Bit 1]	Freely useable information for usage in the Flexi Soft logic.
	Note: On the usage of this information the status of the received I/O error bits is also to be evaluated.

Tab. 25: Status information on the EFI gateway (data **from the** EFI gateway)

4.4.7 UE4740 EFI gateway

Status information	Meaning/effect
I/O error [Byte 1, Bit 1]	Logical 0, if there is no error on the EFI gateway
	Logical 1, if there is an error on the EFI gateway
	Note: The I/O error is calculated automatically from the validity of the data on the interfaces connected and as a function of the usage of the data (in the gateway routing). Indicates that the data on this EFI interface are currently invalid and represent substitute values. This situation occurs, for example, on EFI gateways if the controlling (F)PLC is not (yet) operating.
All except [Byte 1, Bit 1]	Freely programmable signals correspond to the requirements for the EFI devices connected

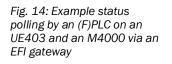

Tab. 26: Control features on the EFI gateway (data **to the** EFI gateway)

Control feature	Meaning/effect
I/O error [Byte 1, Bit 1]	 Logical 0, if there is no error on a connected device
	 Logical 1, if there is an error on a connected device
	Note: Indicates that the data on this EFI interface are currently invalid.
All except [Byte 1, Bit 1]	 Freely useable information for further data routing.
	Note: On the usage of this information the status of the received I/O error bits is also to be evaluated.

4.5 Application examples

4.5.1 EFI gateway with M4000 multiple light beam safety device

The (F)PLC can access the M4000 via the routing in the EFI gateway. In this way it can send muting signals to the M4000 and receive output information (e.g. from M4000 OSSDs).



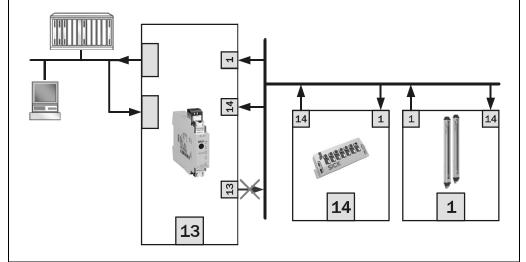

Used addresses via EFI: 14 for the EFI gateway, 1 for the M4000

Fig. 13: Example data exchange between an (F)PLC and an M4000 via an EFI gateway

4.5.2 EFI gateway with M4000 and UE403 switching amplifier

In this case the M4000 receives the muting signals from the UE403 (address 14). The EFI gateway receives the status information (e.g. on the OSSDs or on the muting lamp) from the M4000 (address 1) and from the UE403 (address 14). The EFI gateway routes this information to the (F)PLC.

Note

With M4000 firmware < 1.50 the device address of the EFI gateway must be re-configured to 13 before commissioning it with other devices, so that the exchange of data does not collide with the UE403. The address 13 is valid for both EFI strings. For this reason it is possible to connect to the second EFI string either an identical UE403/M4000 system or a product that can receive the address data from address 13. From firmware 1.50 this restriction no longer applies as the communication addresses between UE403 and M4000 can be changed.

The combination of M4000 and UE403 switching amplifier on one EFI string and a further M4000 on the second EFI string is, for example, with M4000 firmware < 1.50 not possible technically.

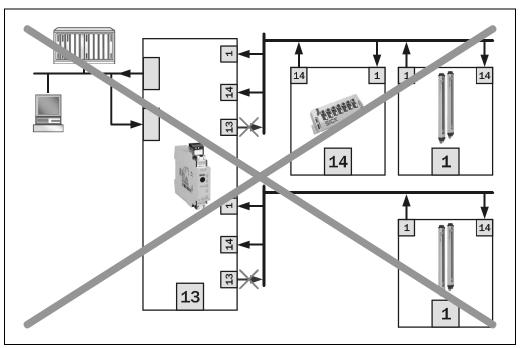
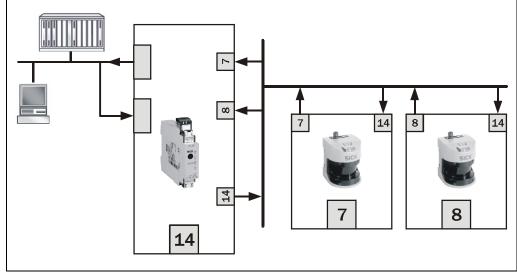


Fig. 15: Example of an invalid combination


Fig. 16: Example control of two S3000 via an EFI gateway using one (F)PLC

FFI

From M4000 firmware 1.50 there are further options by changing the communication addresses between UE403 and M4000. The address can be 11, 12, 13 or 14.

4.5.3 EFI gateway with two S3000 safety laser scanners

The protective field switching on the S3000 is performed via the (F)PLC. The control input signals for this purpose are routed to the S3000 via the EFI gateway (address 14). The status information from the S3000 is received by the EFI gateway (addresses 7 and 8) and

EFI gateways with S3000 or S300 host/guest systems with local inputs 4.5.4

Only the status information from the S3000 or S300 safety laser scanners is received by the EFI gateway (addresses 7 and 8) and routed to the (F)PLC. The protective field switching is performed using the local inputs on the host. This information is forwarded to the guest (address 7).

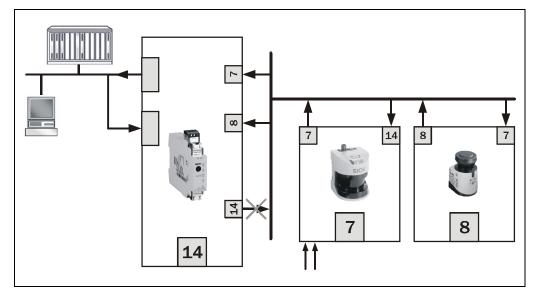
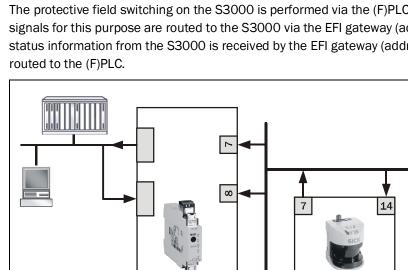



Fig. 17: Example status polling on an S3000/S300 host/guest system via an EFI gateway by an (F)PLC

4.5.5 EFI gateway with two S300 safety laser scanners

The protective field switching is performed via the (F)PLC. The control input signals used for this purpose are routed to the two S300 over two separate EFI strings via the EFI gateway (each address 14). The status information from the S300 is received by the EFI gateway (each address 7) and routed to the (F)PLC.

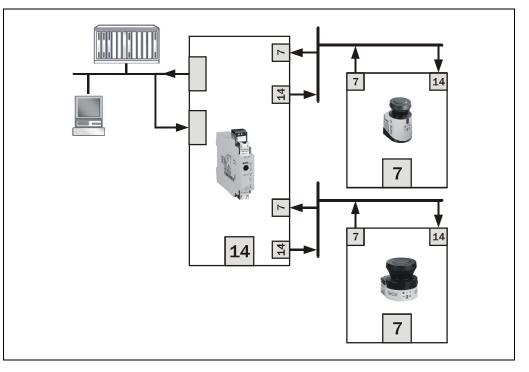
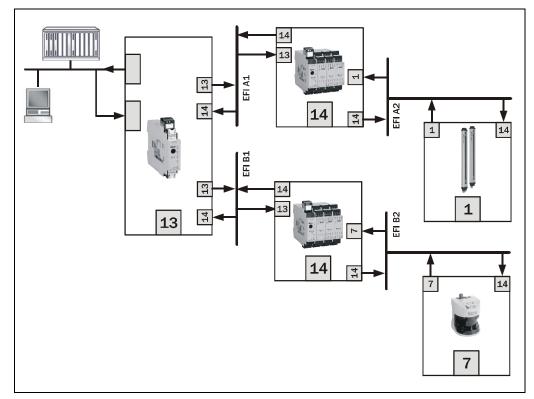



Fig. 18: Example control of an S300 and an S300 Mini via an EFI gateway using one (F)PLC

4.5.6 EFI gateway with safety controllers

A special case is if an EFI gateway and a safety controller are connected to an EFI string. The device address for the EFI gateway must then be re-configured to 13 so that the exchange of data does not collide with the safety controller (here Flexi Soft).

In the example the EFI gateway receives the (F)PLC control commands for the Flexi Soft and routes them to device address 13 on the first EFI string. The Flexi Soft in turn outputs its control commands for the ESPE connected via the second EFI string for the Flexi Soft to the ESPE (address 14).

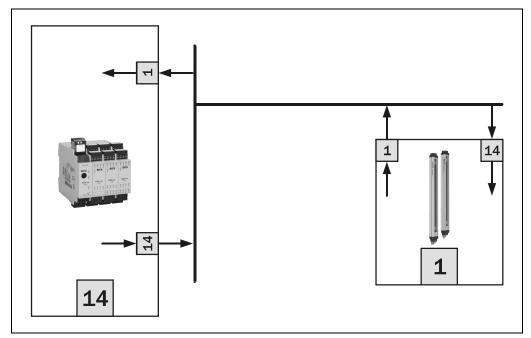
The Flexi Soft receives via EFI the status information for the ESPE (address 1 on the M4000, address 7 on the S3000).

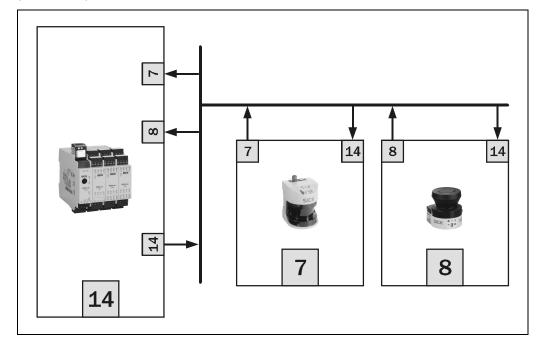
Via the related first EFI string the Flexi Soft in turn provides its status information to the EFI gateway, this device then routes the information to the (F)PLC.

Fig. 19: Example data exchange between an (F)PLC and an M4000 and an S3000 via an EFI gateway

4.5.7 Flexi Soft safety controller with M4000 multiple light beam safety device

The Flexi Soft safety controller can access the M4000 via EFI. In this way it can send muting signals to the M4000 (address 14) and receive output information, e.g. on the M4000 OSSDs (address 1).




Fig. 20: Example implementation of muting with M4000 and Flexi Soft

FFI

4.5.8 Flexi Soft safety controller with two S3000 or S300 Mini

The status information from the S3000 or S300 Mini safety laser scanners is received by the Flexi Soft safety controller (addresses 7 and 8) and evaluated. The protective field switching on the S3000 is performed via the Flexi Soft safety controller. The control input signals for this purpose are routed to the S3000 or S300 Mini via the EFI gateway (address 14).

Fig. 21: Example protective field switching via Flexi Soft

4.5.9 Flexi Soft safety controller with S3000 or S300 host/guest system (with local inputs)

Only the status information from the S3000 or S300 is received by the Flexi Soft safety controller (addresses 7 and 8) and evaluated. The protective field switching is performed using the local inputs on the host. This information is forwarded to the guest (address 7).

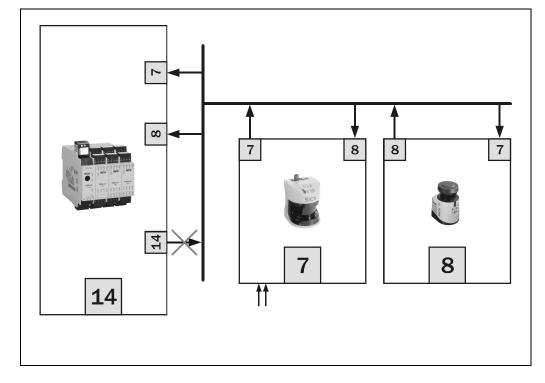
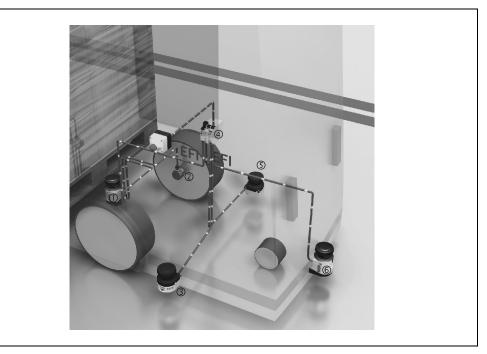
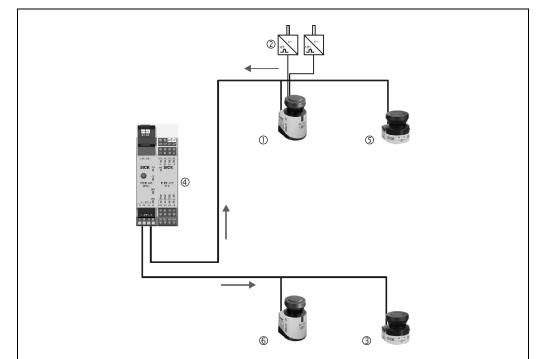


Fig. 22: Example protective field switching using local inputs


Velocity routing

If several safety laser scanners are connected to a Flexi Soft safety controller, then a velocity routing can be configured. In this way the velocity information that is determined e.g. by an S3000 or S300 Professional or Expert with the aid of incremental encoders is distributed to all safety laser scanners.


The velocity routing is not available in the compatibility mode.

Note

- Fig. 23: Example for velocity routing on an AGV ① S300 Expert on EFI1.1 ② Incremental encoder ③ S300 Mini on EFI2.2 ④ Flexi Soft ⑤ S300 Mini on EFI1.2
- 6 S300 on EFI2.1

On the S300 Expert on EFI1.1 ① incremental encoders ② are connected. These generate the necessary velocity signals. The signals are distributed by the Flexi Soft safety controller ④ to all **four** safety laser scanners (① and ⑤ as well as ③ and ⑥) and are available on all **four** safety laser scanners for monitoring case switching.

- Fig. 24: Connection diagram for velocity routing ① S300 Expert on EFI1.1 ② Incremental encoder ③ S300 Mini on EFI2.2 ④ Flexi Soft
- (5) S300 Mini on EFI1.2
- 6 S300 on EFI2.1

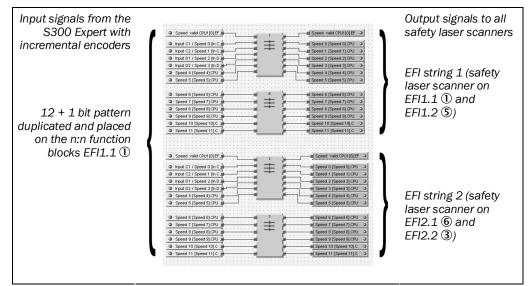

Designer

Fig. 25: Example for velocity

routing in the Flexi Soft

How to configure a velocity routing in the Flexi Soft Designer:

Configure the velocity routing in the Flexi Soft Designer for instance as in the following figure.

The velocity signals of the S300 Expert are broken down into a 12 + 1 bit pattern, 12 velocity bits and one bit for validation. These signals are available as input signals, are duplicated and placed **twice** on the n:n function blocks (0 and 1 as well as 2 and 3).

The outputs of the function blocks are placed on EFI string 1 or on EFI string 2. As a result they are available to all four safety laser scanners.

The "Velocity valid" status information is relevant for safety!

Ensure that the Velocity valid input signal is connected to the Velocity valid output signal.

How to configure the safety laser scanners in the CDS:

> On the **Incremental encoder** tab for the S300 Expert to which the incremental encoders are connected, select the **Indicate velocity** option.

All safety laser scanners, also the sending devices, must use these velocity signals via EFI.

- For this reason activate on all safety laser scanners on the Inputs tab the option Use Flexi Soft CPU1/2.
- > Then, select on all safety laser scanners on the Inputs tab the Use velocity option.

5 Configuration options via EFI

To ensure the devices fulfil their application-specific function and can exchange data with each other, configuration is necessary. ESPE, safety controller and EFI gateway are configured using the configuration software CDS, the Flexi Soft modular safety controller using the configuration software Flexi Soft Designer.

Depending on the composition of a system configuration, there are different points for accessing the overall configuration of the safety controllers and safety sensors.

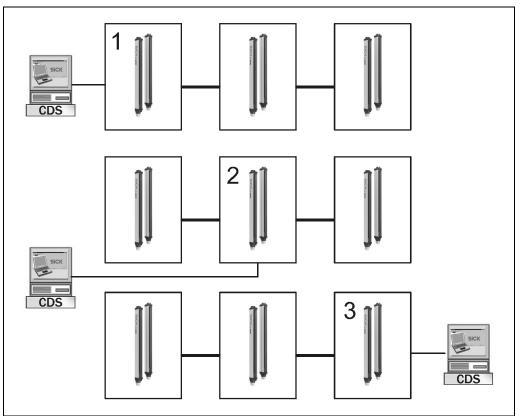
If only safety controllers and safety sensors are used on an EFI connection or only one active EFI connection is used, a specific procedure for the configuration is not necessary. The PC to be used for the configuration can be connected to any device in the EFI system.

In the case of device groups with more than one active EFI string, however, a specific procedure for the configuration must be followed, as sensors in the group cannot be detected across EFI strings and as a result configuration will be prevented.

5.1 Device groups with one EFI string

5.1.1 Cascaded system with the safety light curtain C4000

You can configure a cascaded system with three C4000 safety light curtains from the C4000 Host (1), from the C4000 Guest 1 (2) as well as from the C4000 Guest 2 (3).



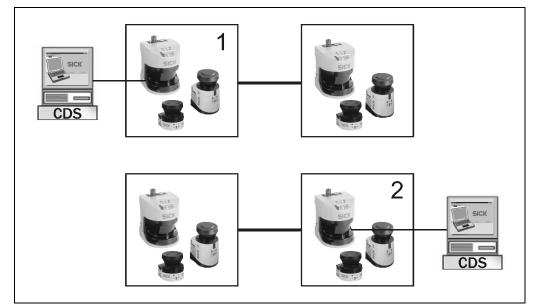

Fig. 26: Configuration of a cascaded system

Fig. 27: Configuration of a host/guest system

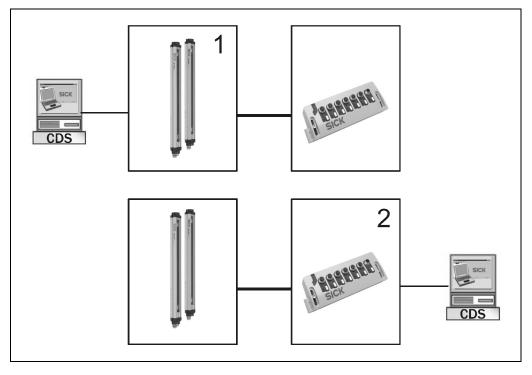
EFI

5.1.2 Host/guest system with the S300/S300 Mini/S3000 safety laser scanners

You can configure a host/guest system with two S300/S300 Mini/S3000 safety laser scanners both from the host (1) as well as from the guest (2).

5.1.3 M4000 with UE403 switching amplifier

You can configure an M4000 with a UE403 switching amplifier both from the M4000 (1) as well as from the UE403 (2).



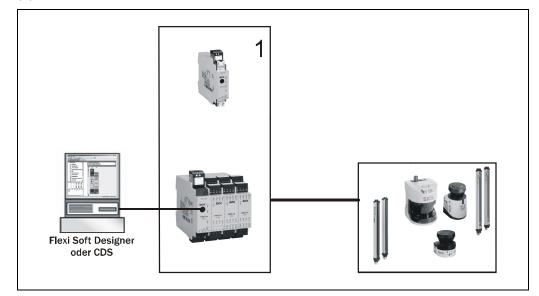

Fig. 28: Configuration on an ESPE with switching amplifier

Fig. 29: Configuration of a safety controller with ESPE

EFI

5.1.4 Safety controller with one ESPE

You can configure a safety controller and the ESPE connected from the safety controller (1).

5.1.5 EFI gateway with ESPE(s) connected

You can configure an EFI gateway and the ESPE connected to it from the higher level network (e.g. PROFIsafe).

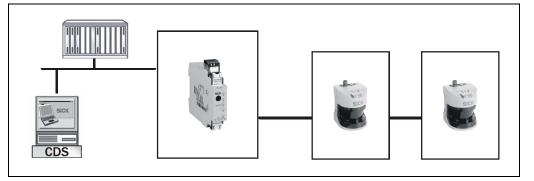


Fig. 30: Configuration of an EFI gateway with S3000 connected

5.2 Device groups with two EFI strings

5.2.1 Safety controller with two ESPE

You can completely configure a safety controller (1) with two ESPE connected via EFI (2a and 2b) from the safety controller.

<image><complex-block>Fei Soft Designer/CDI

If you connect the PC to the RS-232 interface on an ESPE (2a), you can only configure this device. Although the safety controller (1) and the second ESPE (2b) are visible in the CDS, they cannot be configured and diagnostics are not possible.

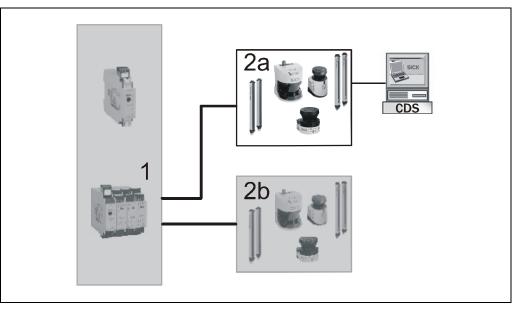
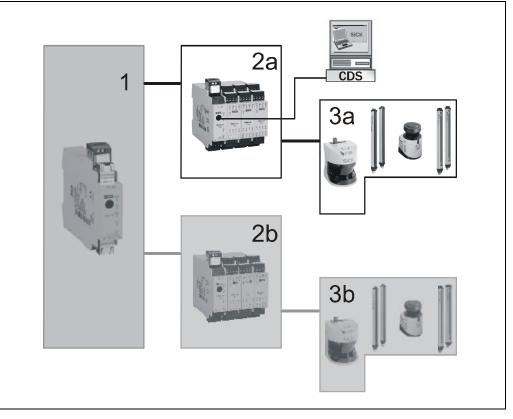



Fig. 31: Configuration of a safety controller with two ESPE

Fig. 32: Configuration of an ESPE, e.g., on a safety controller

5.2.2 EFI gateway with safety controller and ESPE connected

If a safety controller with an ESPE is integrated via an EFI gateway, then you can configure the EFI gateway (2) and the ESPE (3) via the safety controller (1).

It is only possible to configure the EFI gateway via the EFI gateway (2). Although the safety controller (1) and the ESPE (3) are visible in the CDS, they cannot be configured and diagnostics are not possible.

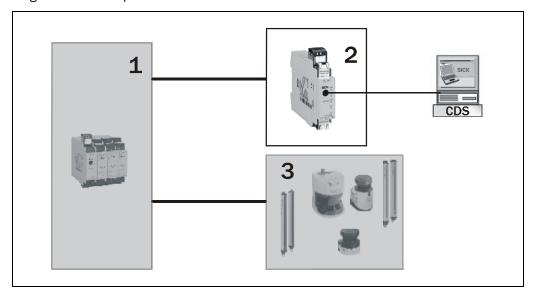


Fig. 33: Configuration of an EFI gateway via a safety controller with ESPE

Fig. 34: Configuration of an EFI gateway via the EFI gateway

5.2.3 EFI gateway with two safety controllers with ESPE connected

If two safety controllers each with an ESPE are integrated via an EFI gateway into PROFINET, the system configuration must be performed in three steps.

First the safety controller and the ESPE connected to the first EFI string on the EFI gateway are configured (2a and 3a).

Fig. 35: Configuration of the first safety controller with ESPE

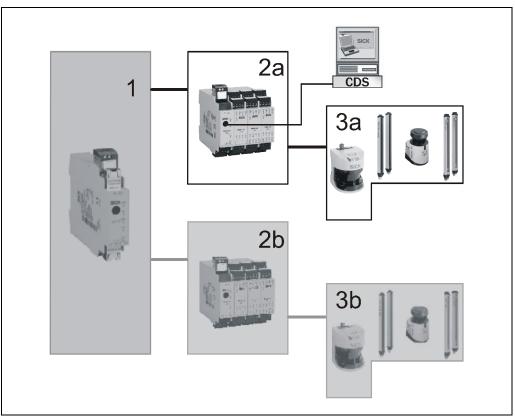
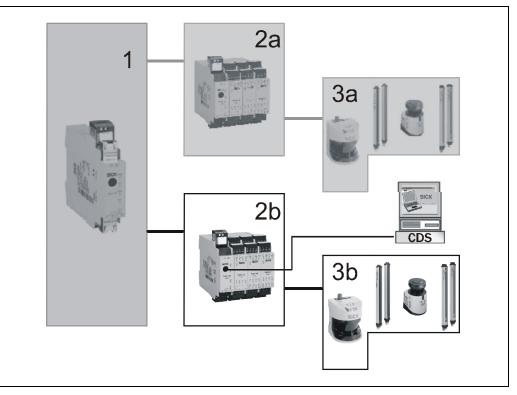



Fig. 36: Configuration of the second safety controller with

EFI

ESPE

Then the safety controller and the ESPE connected to the second EFI string on the EFI gateway are configured (2b and 3b).

Finally the EFI gateway and the safety controllers connected to it are configured (1, 2a and 2b).

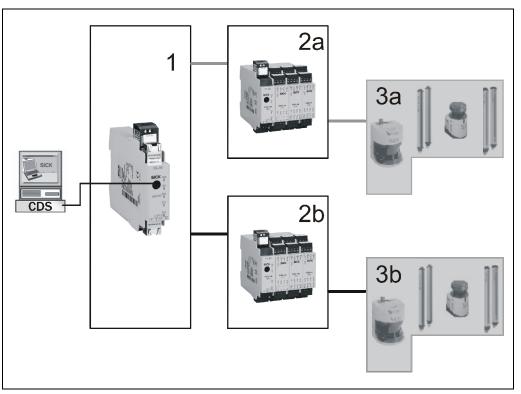


Fig. 37: Configuration of the EFI gateway

6 Technical specifications

6.1 Electrical installation

If you connect devices together using EFI, connect EFI_A on the first device to EFI_A on the second device and EFI_B on the first device to EFI_B on the second device. Use the same earthing concept for the devices.

Prevent electromagnetic interference!

Follow the information on the prevention of electromagnetic interference in the operating instructions for the related devices.

- connecting cable type: twisted pairs with copper braid screen
- cable length at 0.22 mm² cables: 50 m
- galvanic isolation
- characteristic impedance of the connecting cable: 120 $\boldsymbol{\Omega}$
- wire cross-section of the connecting cable: ≥0.22 mm²
- line wiring

6.2 Interfaces

Various interface are available for the configuration of the devices:

• RS-232 interface

All EFI devices have a serial RS-232 interface for configuration and diagnostics. (For PCs/notebooks that only have USB ports, a RS-232-USB adapter is available as an accessory with the part no. 6035396.)

 PROFINET IO This connection can be used together with the UE4740 EFI gateway for PROFINET IO PROFIsafe.

Note You will find suitable connecting cables in the comprehensive range of SICK accessories (e.g. fieldbus cable 4-core (supply/bus) part no. 6030921).

7

Annex

7.1 List of tables

Tab. 1:	Product family addresses on the EFI	15
Tab. 2:	Maximum number of items of status information received	16
Tab. 3:	Firmware compatibility C4000/UE devices	17
Tab. 4:	Firmware compatibility M4000/UE devices	18
Tab. 5:	Firmware compatibility S300/S3000/UE devices	19
Tab. 6:	Bytes of the EFI communication	19
Tab. 7:	Byte 0 of the EFI communication	20
Tab. 8:	Byte 1 of the EFI communication	21
Tab. 9:	Byte 2 of the EFI communication	22
Tab. 10:	Byte 3 of the EFI communication	23
Tab. 11:	Byte 4 of the EFI communication	24
Tab. 12:	Byte 5 of the EFI communication	25
Tab. 13:	Status information of the C4000 (data from the C4000)	26
Tab. 14:	Control features on the C4000 (data to the C4000)	27
Tab. 15:	Status information of the M4000 (data from the M4000)	28
Tab. 16:	Control features on the M4000 (data to the M4000)	28
Tab. 17:	Status information of the S3000 (data from the S3000)	29
Tab. 18:	Control features on the S3000 (data to the S3000)	31
Tab. 19:	Status information of the S300 (data from the S300)	32
Tab. 20:	Control features on the S300 (data to the S300)	33
Tab. 21:	Status information of the S300 Mini (data from the S300 Mini)	34
Tab. 22:	Control features on the S300 Mini (data to the S300 Mini)	35
Tab. 23:	Status information on the Flexi Soft (data from the Flexi Soft)	36
Tab. 24:	Control features on the Flexi Soft (data to the Flexi Soft)	36
Tab. 25:	Status information on the EFI gateway (data from the EFI gateway)	37
Tab. 26:	Control features on the EFI gateway (data to the EFI gateway)	37

7.2 List of illustrations

F:~ 4.	Velective dependent vehicle receitering for high interval	0
Fig. 1:	Velocity-dependent vehicle monitoring for bi-directional travel	8
Fig. 2:	Principle of the S300 host/guest system	8
Fig. 3:	Hazardous point protection with presence detection	9
Fig. 4:	Principle of the cascaded C4000 system	9
Fig. 5:	Access protection with muting	10
Fig. 6:	Principle of the M4000 muting system	10
Fig. 7:	Safety application with a Flexi Soft safety controller	11
Fig. 8:	Simultaneous protective field monitoring with S3000 and a safety controller	11
Fig. 9:	Integration of two S300 in host/guest operation into a bus system	

Annex

		EFI
Fig. 10:	Safety controller with ESPE connected via two EFI strings	13
Fig. 11:	Example data exchange between two S3000	14
Fig. 12:	Example data exchange between an (F)PLC and an M4000 via an EFI gateway	14
Fig. 13:	Example data exchange between an (F)PLC and an M4000 via an EFI gateway	38
Fig. 14:	Example status polling by an (F)PLC on an UE403 and an M4000 via an EFI gateway	39
Fig. 15:	Example of an invalid combination	39
Fig. 16:	Example control of two S3000 via an EFI gateway using one (F)PLC	40
Fig. 17:	Example status polling on an S3000/S300 host/guest system via an EFI gateway by an (F)PLC	40
Fig. 18:	Example control of an S300 and an S300 Mini via an EFI gateway using one (F)PLC	41
Fig. 19:	Example data exchange between an (F)PLC and an M4000 and an S3000 via an EFI gateway	42
Fig. 20:	Example implementation of muting with M4000 and Flexi Soft	43
Fig. 21:	Example protective field switching via Flexi Soft	44
Fig. 22:	Example protective field switching using local inputs	44
Fig. 23:	Example for velocity routing on an AGV	45
Fig. 24:	Connection diagram for velocity routing	45
Fig. 25:	Example for velocity routing in the Flexi Soft Designer	46
Fig. 26:	Configuration of a cascaded system	47
Fig. 27:	Configuration of a host/guest system	48
Fig. 28:	Configuration on an ESPE with switching amplifier	48
Fig. 29:	Configuration of a safety controller with ESPE	49
Fig. 30:	Configuration of an EFI gateway with S3000 connected	49
Fig. 31:	Configuration of a safety controller with two ESPE	50
Fig. 32:	Configuration of an ESPE, e.g., on a safety controller	50
Fig. 33:	Configuration of an EFI gateway via a safety controller with ESPE	51
Fig. 34:	Configuration of an EFI gateway via the EFI gateway	51
Fig. 35:	Configuration of the first safety controller with ESPE	52
Fig. 36:	Configuration of the second safety controller with ESPE	53
Fig. 37:	Configuration of the EFI gateway	53

Australia Phone +61 3 9457 0600 1800 334 802 - tollfree

E-Mail sales@sick.com.au Austria Phone +43 22 36 62 28 8-0

E-Mail office@sick.at

Belgium/Luxembourg Phone +32 2 466 55 66 E-Mail info@sick.be

Brazil Phone +55 11 3215-4900 E-Mail marketing@sick.com.br

Canada Phone +1 905 771 14 44 E-Mail information@sick.com

Czech Republic Phone +420 2 57 91 18 50 E-Mail sick@sick.cz

Chile Phone +56 2 2274 7430 E-Mail info@schadler.com

China Phone +86 20 2882 3600 E-Mail info.china@sick.net.cn

Denmark Phone +45 45 82 64 00 E-Mail sick@sick.dk

Finland Phone +358-9-2515 800 E-Mail sick@sick.fi

France Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Germany Phone +49 211 5301-301 E-Mail info@sick.de

Hong Kong Phone +852 2153 6300 E-Mail ghk@sick.com.hk

Hungary Phone +36 1 371 2680 E-Mail office@sick.hu

India Phone +91 22 4033 8333 E-Mail info@sick-india.com Israel Phone +972 4 6881000 E-Mail info@sick-sensors.com Italy

Phone +39 02 274341 E-Mail info@sick.it

Japan Phone +81 3 5309 2112 E-Mail support@sick.jp

Malaysia Phone +6 03 8080 7425 E-Mail enquiry.my@sick.com

Mexico Phone +52 472 748 9451 E-Mail mario.garcia@sick.com

Netherlands Phone +31 30 2044 000 E-Mail info@sick.nl

New Zealand Phone +64 9 415 0459 0800 222 278 - tollfree E-Mail sales@sick.co.nz

Norway Phone +47 67 81 50 00 E-Mail sick@sick.no

Poland Phone +48 22 539 41 00 E-Mail info@sick.pl

Romania Phone +40 356 171 120 E-Mail office@sick.ro

Russia Phone +7 495 775 05 30 E-Mail info@sick.ru

Singapore Phone +65 6744 3732 E-Mail sales.gsg@sick.com

Slovakia Phone +421 482 901201 E-Mail mail@sick-sk.sk

Slovenia Phone +386 591 788 49 E-Mail office@sick.si

South Africa Phone +27 11 472 3733 E-Mail info@sickautomation.co.za South Korea Phone +82 2 786 6321 E-Mail info@sickkorea.net Spain

Phone +34 93 480 31 00 E-Mail info@sick.es

Sweden Phone +46 10 110 10 00 E-Mail info@sick.se

Switzerland Phone +41 41 619 29 39 E-Mail contact@sick.ch Taiwan

Phone +886 2 2375-6288 E-Mail sales@sick.com.tw

Thailand Phone +66 2645 0009 E-Mail Ronnie.Lim@sick.com

Turkey Phone +90 216 528 50 00 E-Mail info@sick.com.tr

United Arab Emirates Phone +971 4 88 65 878 E-Mail info@sick.ae

United Kingdom Phone +44 1727 831121 E-Mail info@sick.co.uk

USA Phone +1 800 325 7425 E-Mail info@sick.com

Vietnam Phone +84 945452999 E-Mail Ngo.Duy.Linh@sick.com

Further locations at www.sick.com

