Dx35

Distance sensors
Table of contents

Important safety notes ... 7

1 General information .. 8
 1.1 Information regarding the operating instructions ... 8
 1.2 Explanation of symbols ... 8
 1.3 Limitation of liability .. 9
 1.4 Scope of delivery .. 9
 1.5 Customer service .. 9
 1.6 EC declaration of conformity .. 10
 1.7 Environmental protection .. 10

2 Safety .. 11
 2.1 Intended use ... 11
 2.2 Incorrect use ... 11
 2.3 Requirements for skilled persons and operating personnel 12
 2.4 Warning symbol on the device .. 13
 2.5 Operational safety and particular hazards ... 14
 2.6 Hazard warnings and operational safety .. 14

3 Identification .. 15
 3.1 Type label ... 15
 3.2 Type code .. 16

4 Structure and function .. 17
 4.1 Structure .. 17
 4.2 Function .. 20

5 Transport and storage ... 21
 5.1 Transport .. 21
 5.2 Transport inspection ... 21
 5.3 Storage ... 22

6 Mounting .. 23
 6.1 Aligning the DL and DR models .. 23
 6.2 Alignment aid for infrared models ... 23

7 Electrical connection ... 25
 7.1 Safety ... 25
 7.2 Wiring notes .. 25
 7.3 Connecting the distance sensor electrically ... 26
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Connection diagrams</td>
<td>26</td>
</tr>
<tr>
<td>7.4.1</td>
<td>DT35 and DL35</td>
<td>26</td>
</tr>
<tr>
<td>7.4.2</td>
<td>DS35 and DR35</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Commissioning</td>
<td>28</td>
</tr>
<tr>
<td>8.1</td>
<td>Performing teach-in</td>
<td>28</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Performing one-point (DtO) teach</td>
<td>29</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Performing window (Wnd) teach</td>
<td>30</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Teaching in the background (ObSB)</td>
<td>32</td>
</tr>
<tr>
<td>8.2</td>
<td>Scaling the analog output</td>
<td>33</td>
</tr>
<tr>
<td>8.3</td>
<td>Performing fine teach</td>
<td>34</td>
</tr>
<tr>
<td>8.4</td>
<td>Configuring the speed</td>
<td>35</td>
</tr>
<tr>
<td>8.5</td>
<td>Expert mode</td>
<td>36</td>
</tr>
<tr>
<td>8.6</td>
<td>Reset to factory setting</td>
<td>37</td>
</tr>
<tr>
<td>8.7</td>
<td>External teach functions</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>IO-Link interface</td>
<td>39</td>
</tr>
<tr>
<td>9.1</td>
<td>Physical layer</td>
<td>39</td>
</tr>
<tr>
<td>9.2</td>
<td>Process data</td>
<td>39</td>
</tr>
<tr>
<td>9.3</td>
<td>Service data</td>
<td>40</td>
</tr>
<tr>
<td>9.3.1</td>
<td>IO-Link-specific</td>
<td>40</td>
</tr>
<tr>
<td>9.3.2</td>
<td>SICK-specific – outputs</td>
<td>41</td>
</tr>
<tr>
<td>9.3.3</td>
<td>SICK-specific – sensor performance</td>
<td>43</td>
</tr>
<tr>
<td>9.3.4</td>
<td>SICK-specific – teach</td>
<td>45</td>
</tr>
<tr>
<td>9.3.5</td>
<td>SICK-specific – process data</td>
<td>45</td>
</tr>
<tr>
<td>9.3.6</td>
<td>SICK-specific – other settings</td>
<td>46</td>
</tr>
<tr>
<td>9.3.7</td>
<td>System command</td>
<td>47</td>
</tr>
<tr>
<td>9.4</td>
<td>Error Codes</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>Additional functions</td>
<td>48</td>
</tr>
<tr>
<td>10.1</td>
<td>Output as signal level warning (VMA)</td>
<td>48</td>
</tr>
<tr>
<td>10.2</td>
<td>Output as alarm output</td>
<td>49</td>
</tr>
<tr>
<td>10.3</td>
<td>Centering function</td>
<td>49</td>
</tr>
<tr>
<td>10.4</td>
<td>Teach confirmation function</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>Cleaning and maintenance</td>
<td>51</td>
</tr>
<tr>
<td>11.1</td>
<td>Cleaning</td>
<td>51</td>
</tr>
<tr>
<td>11.2</td>
<td>Maintenance</td>
<td>51</td>
</tr>
<tr>
<td>12</td>
<td>Disposal</td>
<td>51</td>
</tr>
</tbody>
</table>
Table of contents

13 Technical data

- 13.1 Dimensions ... 53
- 13.2 Laser/optics ... 54
- 13.3 Performance data ... 54
- 13.4 Power supply ... 55
- 13.5 Inputs ... 55
- 13.6 Outputs ... 56
- 13.7 Interfaces ... 56
- 13.8 Ambient conditions .. 56
- 13.9 Mechanics ... 57
- 13.10 "Repeatability" diagrams ... 57
 - 13.10.1 DT35 and DS35 models .. 57
 - 13.10.2 DL35 and DR35 models .. 59

14 Accessories

- 14.1 Cables and Connectors .. 60
 - 14.1.1 Cable socket, straight, with cable 60
 - 14.1.2 Cable socket, angled, with cable 60
 - 14.1.3 Connection cable (plug-socket) 61
- 14.2 Mounting system .. 61
 - 14.2.1 Mounting bracket .. 61
 - 14.2.2 Alignment bracket ... 62
 - 14.2.3 Universal bar clamp systems 63
- 14.3 Reflector plate and reflective tape 64
 - 14.3.1 Reflector plate .. 64
 - 14.3.2 Reflective tape ... 64
- 14.4 IO-Link master ... 64

15 Menu structure and settings overview

- Index .. 66
Important safety notes

NFPA79 applications only.
Adapters providing field wiring leads are available.
Refer to the product information. → See "www.mysick.com/en/dx35".

CAUTION

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.
1 General information

1.1 Information regarding the operating instructions

These operating instructions supplement the Quick start guide and contain additional information and detailed descriptions for using SICK AG's DS35, DT35, DL35, and DR35 distance sensors. These operating instructions are intended for specialists and electricians.

1.2 Explanation of symbols

Warnings

Warnings in these operating instructions are indicated by symbols. The warnings are introduced by signal words that indicate the extent of the danger.

These warnings must be observed at all times and care must be taken to avoid accidents, personal injury, and material damage.

DANGER

... indicates a situation of imminent danger, which will lead to a fatality or serious injuries if not prevented.

WARNING

... indicates a potentially dangerous situation, which may lead to a fatality or serious injuries if not prevented.

CAUTION

... indicates a potentially dangerous situation, which may lead to minor/slight injuries if not prevented.

NOTICE

... indicates a potentially harmful situation, which may lead to material damage if not prevented.
1.3 Limitation of liability

Applicable standards and regulations, the latest state of technological development and many years of knowledge and experience have all been taken into account when assembling the data and information contained in these operating instructions.

The manufacturer accepts no liability for damage caused by:

- Failing to observe the operating instructions
- Incorrect use
- Use by untrained personnel
- Unauthorized conversions
- Technical modifications
- Use of unauthorized spare parts/consumable parts.

With special variants, where extras have been ordered, or owing to the latest technical changes, the actual delivery may vary from the features and illustrations shown here.

1.4 Scope of delivery

The scope of delivery includes the following:

- DS35, DT35, DL35, or DR35 distance sensor (→ For type code, see Page 15, Chapter 3.2)
- Optional: Accessories (→ Page 60, Chapter 14)

Supplied documentation:

- Quick start guide

1.5 Customer service

Do not hesitate to contact our customer service should you require any technical information.

Please refer to the back page of these operating instructions for your agent’s contact details.

NOTE

Before calling, make a note of all type label data such as type code, serial number, etc. to ensure faster processing.
1.6 EC declaration of conformity

→ You can download the EC declaration of conformity online from "www.mysick.com/en/dx35".

1.7 Environmental protection

→ See Page 51, Chapter 12 "Disposal"
2 Safety

2.1 Intended use

The DS35 and DT35 distance sensors are opto-electronic sensors for performing non-contact distance measurement of objects.

The DL35 and DR35 distance sensors are opto-electronic sensors for performing non-contact distance measurement on reflective tape.

SICK AG assumes no liability for losses or damage arising from the use of the product, either directly or indirectly. This applies in particular to use of the product that does not conform to its intended purpose and is neither described nor mentioned in this documentation.

2.2 Incorrect use

The distance sensors must not be used in areas where explosions are possible.

Any other use that is not described as intended use is prohibited.

Never install or connect accessories if their quantity and composition are not clearly specified, or if they have not been approved by SICK AG.

WARNING

Danger due to incorrect use!

Any incorrect use can result in dangerous situations.

For this reason:

- Distance sensors should be used only according to intended use.
- All information in these operating instructions must be strictly complied with.
2.3 Requirements for skilled persons and operating personnel

WARNING
Risk of injury due to insufficient training!
Improper handling may result in considerable personal injury and material damage.
For this reason:
- All activities should always be performed only by designated persons.

These operating instructions list the training requirements for the various fields of activity, as follows:

- **Skilled personnel**
 Due to their specialized training, skills, and experience, as well as their knowledge of the relevant regulations, such persons are able to perform tasks delegated to them and detect any potential dangers independently.

- **Electricians**
 Due to their specialized training, skills, and experience, as well as their knowledge of the relevant standards and provisions, such persons are able to perform work on electrical systems and detect any potential dangers independently.
 In Germany, electricians must meet the specifications of the BGV A3 Work Safety Regulations (e.g., Master Electrician). Other relevant regulations applicable in other countries must be observed.

2.4 Warning symbol on the device

Laser class 2
Distances sensors designated as laser class 2 include the following warning label.

![Warning symbol on sensor having class 2 laser](image)

Fig. 1: Warning symbol on sensor having class 2 laser
CAUTION LASER RADIATION
Do not look into the beam.
Class 2 laser product
Safety

Laser class 1

Distance sensors designated as laser class 1 include the following warning label.

- DT35-B15551
- DS35-B15521
- DL35-B15552
- DR35-B15522
- DT35-B15851
- DS35-B15821
- DL35-B15852
- DR35-B15822

Fig. 2: Warning symbol on sensor having class 1 laser
Class 1 laser product

2.5 Operational safety and particular hazards

Please observe the safety notes and the warnings listed here and in other chapters of these operating instructions to reduce the possibility of health risks and avoid dangerous situations.

2.6 Hazard warnings and operational safety

Laser beam

For your own safety, please read and observe the following note:

WARNING
Risk of injury from laser radiation!

Looking directly into the laser beam may result in eye injury.

- Do not look into the laser beam.
3 Identification

3.1 Type label

The distance sensor includes the following type label:

Fig. 3: "Dx35 Distance sensor" type label

1 2D code
2 For type description, see type code
3 Article number (order number)
4 Year and month of manufacture
5 Serial number
3.2 Type code

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ... 4</td>
<td>Sub-product family</td>
</tr>
<tr>
<td></td>
<td>DS35 Distance sensor, switching on natural objects</td>
</tr>
<tr>
<td></td>
<td>DT35 Distance sensor, measurement on natural objects</td>
</tr>
<tr>
<td></td>
<td>DL35 Distance sensor, measurement on reflective tape</td>
</tr>
<tr>
<td></td>
<td>DR35 Distance sensor, switching on reflective tape</td>
</tr>
<tr>
<td>5</td>
<td>Switching output</td>
</tr>
<tr>
<td></td>
<td>B B-type or push-pull output</td>
</tr>
<tr>
<td>6</td>
<td>Speed, sensing range</td>
</tr>
<tr>
<td></td>
<td>1 Adjustable</td>
</tr>
<tr>
<td>7</td>
<td>Connection type</td>
</tr>
<tr>
<td></td>
<td>5 M12 plug, 5-pin</td>
</tr>
<tr>
<td>8</td>
<td>Light sender, laser class</td>
</tr>
<tr>
<td></td>
<td>2 Red light, laser class 2</td>
</tr>
<tr>
<td></td>
<td>5 Red light, laser class 1</td>
</tr>
<tr>
<td></td>
<td>8 Infrared light, laser class 1</td>
</tr>
<tr>
<td>9</td>
<td>Interface</td>
</tr>
<tr>
<td></td>
<td>2 Switching outputs Q1 and Q2 and IO-Link</td>
</tr>
<tr>
<td></td>
<td>5 Analog current or analog voltage output (Q2), switching output (Q1) and IO-Link</td>
</tr>
<tr>
<td>10</td>
<td>Measurement</td>
</tr>
<tr>
<td></td>
<td>1 Optimized for natural objects</td>
</tr>
<tr>
<td></td>
<td>2 Optimized for reflective tape</td>
</tr>
<tr>
<td>11</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td></td>
<td>X Additional characters possible</td>
</tr>
</tbody>
</table>

Table 1: "Dx35 distance sensor" type code
4 Structure and function

4.1 Structure

Fig. 4: "Dx35 distance sensor" structure and function

1 Optical axis, sender
2 Optical axis, receiver
3 Zero level
4 Mounting hole M4
5 LEDs, teach-in
6 LEDs, status Q1/Q2
7 LED, status indicator
8 Control elements

LEDs, status Q1/Q2

(continued on next page)

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Switching output indicator Q1</td>
</tr>
<tr>
<td></td>
<td>• Orange LED: switching output active</td>
</tr>
<tr>
<td></td>
<td>• LED off: switching output inactive</td>
</tr>
<tr>
<td>Q2</td>
<td>Switching output/Qa analog output indicator Q2</td>
</tr>
<tr>
<td></td>
<td>• LED orange: Switching output active/measurement value within analog output</td>
</tr>
<tr>
<td></td>
<td>scaling</td>
</tr>
<tr>
<td></td>
<td>• LED off: Switching output inactive/measurement value outside analog output</td>
</tr>
<tr>
<td></td>
<td>scaling</td>
</tr>
<tr>
<td>Q1 and Q2 in run mode</td>
<td>"Q1" and "Q2" LEDs flash alternately for longer than 10 seconds: fault exists. Check general conditions such as supply voltage, temperature range, EMC disturbances, etc.</td>
</tr>
<tr>
<td>Q1 and Q2 in teach mode</td>
<td>"Q1" and "Q2" LEDs flash simultaneously: teach is being performed.</td>
</tr>
<tr>
<td></td>
<td>• "Q1" and "Q2" LEDs flash alternately for 5 seconds: teach failed.</td>
</tr>
</tbody>
</table>
Structure and function

LEDs, status Q1/Q2 (continued)

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
</table>
| Q1 and Q2 in alignment mode | Alignment quality indicator (IR models only)
• Slow flashing (approx. 1 Hz): poor alignment quality
• Rapid flashing (approx. 15 Hz): good alignment quality |

Table 2: LEDs, status Q1/Q2

LED, status indicator

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
</table>
| Run | Status indicator
• Rear LED green/front LED orange: Supply voltage present
• LED off: Supply voltage off |

Table 3: LED, status indicator

LEDs, teach-in (continued on next page)

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
</table>
| Q1 near, Q1 far, Q2 near, Q2 far, in teach mode | • Perform one-point or window teach.
• One of the LEDs lights up: Teach can be performed.
• One of the LEDs flashes: Fine teach can be performed. |
| Q1 near + Q1 far (ObSB) in teach mode | Teach in ObSB or background for switching output Q1.
• Both LEDs light up: Teach can be performed.
• Both LEDs flash: Fine teach can be performed. |
| Q2 near + Q2 far (ObSB) in teach mode | Teach in ObSB or background for switching output Q2.
• Both LEDs light up: Teach can be performed.
• Both LEDs flash: Fine teach can be performed. |
| slow ... fast in teach mode | Set speed. "Slow ... fast" LED flashes cyclically:
• 1 x: Super-slow
• 2 x: Slow
• 3 x: Medium
• 4 x: Fast
• 5 x: Super-fast
"Slow ... fast" LED lights up continuously:
• Expert or expert setting, adjustable only via IO-Link
→ See Page 43, Chapter 9.3.3. |
| Q1 near, Q1 far, Q2 near, Q2 far, slow ... fast in alignment mode | Alignment quality indicator (IR models only)
• The greater the number of LEDs that light up, the better the alignment quality. |
LEDs, teach-in (continued)

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
</table>
| Q1 near, Q1 far, Q2 near, Q2 far, slow ... fast in expert mode | • "Q1 near" LED lights up and "slow ... fast" LED flashes cyclically: Select function for multifunctional input "MF".
 - 1 x: Teach
 - 2 x: Laser off
 - 3 x: Inactive
 • "Q1 far" LED lights up and "slow ... fast" LED flashes cyclically: Select level for multifunctional input "MF".
 - 1 x: Low active
 - 2 x: High active
 • DT35 and DL35 models only
 "Q2 near" LED lights up and "slow ... fast" LED flashes cyclically: Select output function for Q2.
 - 1 x: 4 ... 20 mA
 - 2 x: 0 ... 10 V
 - 3 x: Switching |

Table 4: LEDs, teach-in

Control elements

<table>
<thead>
<tr>
<th>Control element</th>
<th>Description</th>
</tr>
</thead>
</table>
| select (–) | • In run mode
 Press and hold select pushbutton longer than 5 seconds: Enter or leave teach mode.
 • In teach mode
 Press select pushbutton: Select function.
 • In fine teach mode
 Move previously taught-in switching point by –10 mm. |
| set (+) | • In run mode (IR models only)
 Press and hold set pushbutton longer than 5 seconds: Enter or leave alignment mode.
 • In teach mode
 Press set pushbutton: Perform teach, select function.
 • In fine teach mode
 Move previously taught-in switching point by +10 mm. |
| select + set | • In run mode
 Press and hold select and set pushbuttons simultaneously for longer than 10 seconds: Enter or leave expert mode.
 • In teach mode
 After previously performing teach, press select and set pushbuttons simultaneously for less than 1 second: Enter or leave fine teach. |

Table 5: Control elements
4.2 Function

The DS35 and DT35 distance sensors are opto-electronic sensors for performing non-contact distance measurement of objects.

The DL35 and DR35 distance sensors are opto-electronic sensors for performing non-contact distance measurement on reflective tape.

If Q1 and Q2 are used as switching outputs, the following operation modes are available: Distance to Object (DtO), Window (Wnd), and Object between Sensor and Background (ObSB). The distance measurement value can be transferred cyclically over IO-Link.

For the DT35 and DL35 models, the Q2 output can be configured as a current output (4 ... 20 mA), voltage output (0 ... 10 V), or switching output.
5 Transport and storage

5.1 Transport

Improper transport

NOTICE

Improperly transporting the distance sensor may damage it!

Considerable material damage may occur in the event of improper transport.

For this reason:

• Transport should be performed only by trained specialist staff.

• The utmost care and attention is required at all times during unloading and transportation on company premises.

• Note the symbols on the packaging.

• Do not remove packaging until immediately before you start mounting.

5.2 Transport inspection

Upon receipt, please check the delivery for completeness and for any damage that may have occurred in transit.

In the case of transit damage that is externally visible, proceed as follows:

• Do not accept the delivery or only do so conditionally.

• Note the scope of damage on the transport documents or on the transport company's delivery note.

• File a complaint.

NOTE

Complaints regarding defects should be filed as soon as these are detected. Claims for replacement due to damage are only valid before the applicable complaint deadlines.
5.3 Storage

Store the Dx35 distance sensor under the following conditions:

- Do not store outdoors.
- Store in a dry area that is protected from dust.
- Do not expose to any aggressive substances.
- Protect from sunlight.
- Avoid mechanical shocks.
- Storage temperature range: between −40 and +75 °C
- Relative air humidity: max. 95 %, non-condensing

For storage periods of longer than 3 months, check the general condition of all components and packaging on a regular basis.

NOTE

Other storage conditions may apply to special equipment.
→ See separate operating instructions for special equipment.
6 Mounting

Mount distance sensor using suitable screws (M4). The screws are not included in the scope of delivery.

- → For dimensions, see Page 53, Chapter 13.1.
- → For technical data such as measuring range, see Page 52, Chapter 13.
- → For mounting accessories, see Page 61, Chapter 14.2.

6.1 Aligning the DL and DR models

For the DL and DR models, ensure that the reflective tape is arranged so that no direct surface reflections reach the distance sensor.

Align the reflective tape to the distance sensor in an angled position of approx. 1° ... 3°. → See the figure below.

![Fig. 5: Correct alignment of the reflective tape to the distance sensor](image)

6.2 Alignment aid for infrared models

The infrared models DS35-B15821, DT35-B15851, DL35-B15852, and DR35-B15822 have an alignment aid.

You can determine the exact position of the light spot with the aid of a reflective tape. Please take the typical light spot diameter of the distance sensor into account. → See Page 54, Chapter 13.2.

1. Position object.
2. Attach a small reflective tape to the center of the object for performing alignment.
 → See the figure below.
 For a simpler alignment, you can also first use a reflective strip in the horizontal direction and then in the vertical direction.
3. Change the distance sensor to alignment mode. To do this, in run mode, press and hold the set pushbutton for longer than 5 seconds.
4. Perform coarse alignment. To do this, align the distance sensor roughly in the direction of the reflective tape.
5. Perform fine adjustment. Align the distance sensor such that the highest possible alignment quality is indicated. The alignment quality is indicated as follows:

- using the vertically arranged LEDs Q1 near to slow ... fast: The greater the number of LEDs that light up, the better the alignment quality.
- using the LEDs Q1 and Q2: The faster both LEDs flash, the better the alignment quality. Slow flashing at approx. 1 Hz corresponds to poor alignment quality (no reflective tape). Rapid flashing at approx. 15 Hz corresponds to high alignment quality (highest reflective level).

6. In order to leave alignment mode, either press and hold the set pushbutton longer than 5 seconds or wait 5 minutes without pressing the pushbuttons.

7. Remove the small reflective tape used for alignment from the object.

8. For DL35 and DR35 models, attach a large reflective tape for performing the measurement.

Fig. 6: Aligning infrared light models, entering alignment mode
7 Electrical connection

7.1 Safety

Incorrect supply voltage

NOTICE

Equipment damage due to incorrect supply voltage!
An incorrect supply voltage may result in damage to the equipment.
For this reason:
- Operate the distance sensor using only safety extra-low voltage.
- The power supply must ensure safe electrical isolation (SELV/PELV) and limit the current to a maximum of 8 A.

Working with live parts

NOTICE

Equipment damage or unpredictable operation due to working with live parts!
Working with live parts may result in unpredictable operation.
For this reason:
- Only carry out wiring work when the power is off.
- Only connect and disconnect cable connections when the power is off.

7.2 Wiring notes

NOTICE

Faults due to incorrect wiring!
Incorrect wiring may result in operational faults.
For this reason:
- Follow the wiring notes precisely.

NOTE

We recommend using pre-assembled cables for the wiring. → For pre-assembled cables, see Page 60, Chapter 14.1.
All electrical connections for the distance sensor are configured as M12 round connectors.

The IP 65 or IP 67 protection class is only achieved using screwed plug connectors.

By following the EMC guidelines regarding wiring etc., you can avoid interference from devices such as switching power supplies, motors, clocked drives, and contactors.

7.3 Connecting the distance sensor electrically

1. Ensure that there is no voltage.
2. Connect the distance sensor according to the connection diagram. → See Page 25, Chapter 7.4.
3. Connect the supply voltage.

7.4 Connection diagrams

7.4.1 DT35 and DL35

![Connection diagram](image)

Fig. 7: DT35 and DL35 connection diagram, M12 plug, 5-pin

<table>
<thead>
<tr>
<th>Contact</th>
<th>Marking</th>
<th>Wire color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L+</td>
<td>Brown</td>
<td>Supply voltage: → See Page 55, Chapter 13.4.</td>
</tr>
<tr>
<td>2</td>
<td>Qa/Q2</td>
<td>White</td>
<td>Analog output Qa/switching output Q2</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Blue</td>
<td>Supply voltage: 0 V</td>
</tr>
<tr>
<td>4</td>
<td>Q1/C</td>
<td>Black</td>
<td>Switching output Q1/IO-Link</td>
</tr>
<tr>
<td>5</td>
<td>MF</td>
<td>Gray</td>
<td>Multifunctional input MF</td>
</tr>
</tbody>
</table>

Table 6: Description of M12 plug, DT35 and DL35
7.4.2 DS35 and DR35

Fig. 8: DS35 and DR35 connection diagram, M12 plug, 5-pin

<table>
<thead>
<tr>
<th>Contact</th>
<th>Marking</th>
<th>Wire color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L+</td>
<td>Brown</td>
<td>Supply voltage: → See Page 55, Chapter 13.4.</td>
</tr>
<tr>
<td>2</td>
<td>Q2</td>
<td>White</td>
<td>Switching output Q2</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Blue</td>
<td>Supply voltage: 0 V</td>
</tr>
<tr>
<td>4</td>
<td>Q1/C</td>
<td>Black</td>
<td>Switching output Q1/IO-Link</td>
</tr>
<tr>
<td>5</td>
<td>MF</td>
<td>Gray</td>
<td>Multifunctional input MF</td>
</tr>
</tbody>
</table>

Table 7: Description of M12 plug, DS35 and DR35
8 Commissioning

New content:

Pushbutton damage

NOTICE

Improper operation of the pushbuttons may damage them!

Improperly operating the pushbuttons may damage them. This will make operation difficult or impossible. Damage may negatively affect the enclosure rating.

For this reason:

- Operate the pushbuttons only with your fingers or a suitable aid.
- Do not operate the pushbuttons using sharp or hard objects.

→ For an overview of the various setup options, see Page 65, Chapter 15.

8.1 Performing teach-in

NOTE

Teach mode automatically ends if no pushbuttons have been pressed for 5 minutes.

NOTE

For the DT35 and DL35 distance sensors, for the Q2 output, you can select a current, voltage, or switching output. The correct output must be selected before performing the teach procedure.

→ See Page 36, Chapter 8.5.

NOTE

The hysteresis is preset to 25 mm and can be adjusted only via IO-Link.
8.1.1 Performing one-point (DtO) teach

Distance to object (DtO) – one-point teach

You can perform a one-point teach for the switching output Q1 and/or Q2. Factory setting for Q1: DtO 10,000 mm.

For non-inverted behavior, teach in the switching point for Q1 near or for Q2 near. For inverted behavior, teach in the switching point for Q1 far or for Q2 far.

Be aware that a window teach is performed if you teach in switching points for Q1 near and Q1 far or for Q2 near and Q2 far in one teach procedure. → See Page 29, Chapter 8.1.2.

In a distance below 50 mm, the switching behavior is dependent on the signal quality.

Q1 near or Q2 near (non-inverted behavior)

![Diagram](Fig. 9: One-point teach for Q1 near or Q2 near (non-inverted behaviour))

1. **Teach point:** switching point, position ①

Example: One-point teach is to be performed for the switching output Q1.

1. Position object at teach point ①.
2. Press and hold the **select** pushbutton for longer than 5 seconds. The **Q1 near** LED lights up.

Press the **set** pushbutton.
 - If the teach was successful, the setting is applied immediately.
 - The **Q1** and **Q2** LEDs flash twice simultaneously. If the teach was not successful, the **Q1** and **Q2** LEDs flash alternately.

3. If necessary, perform fine teach. → See Page 34, Chapter 8.3.
4. In order to leave teach mode, either press and hold the **select** pushbutton longer than 5 seconds or wait 5 minutes without pressing the pushbuttons.

Q1 far or Q2 far (inverted behavior)

![Diagram](Fig. 10: One-point teach for Q1 far or Q2 far (inverted behaviour))

1. **Teach point:** switching point, position ①
Example: One-point teach is to be performed for the switching output Q1.

1. Position object at teach point ①.
2. Press and hold the select pushbutton for longer than 5 seconds. The Q1 near LED lights up.
3. Press the select pushbutton. The Q1 far LED lights up.
4. If necessary, perform fine teach. → See Page 34, Chapter 8.3.
5. In order to leave teach mode, either press and hold the select pushbutton longer than 5 seconds or wait 5 minutes without pressing the pushbuttons.

8.1.2 Performing window (Wnd) teach

Window (Wnd) The switching output is set when the object is located within the configured window.
In the range below 50 mm, the switching behavior is dependent on the signal quality.

Example: Window teach is to be performed for the switching output Q1.

1. Position object at teach point ①.
2. Press and hold the select pushbutton for longer than 5 seconds. The Q1 near LED lights up.
3. Press the set pushbutton. If the teach was successful, the setting is applied immediately. The Q1 and Q2 LEDs flash twice simultaneously. If the teach was not successful, the Q1 and Q2 LEDs flash alternately.
4. If necessary, perform fine teach. → See Page 34, Chapter 8.3.
Commissioning

5. Position object at teach point ②.

6. Press the select pushbutton. The Q1 far LED lights up.

Press the set pushbutton.

If the teach was successful, the setting is applied immediately.

The Q1 and Q2 LEDs flash twice simultaneously. If the teach was not successful, the Q1 and Q2 LEDs flash alternately.

7. If necessary, perform fine teach. → See Page 34, Chapter 8.3.

8. In order to leave teach mode, either press and hold the select pushbutton longer than 5 seconds or wait 5 minutes without pressing the pushbuttons.

near < far (continued)

5. Position object at teach point ②.

6. Press the select pushbutton. The Q1 far LED lights up.

Press the set pushbutton.

If the teach was successful, the setting is applied immediately.

The Q1 and Q2 LEDs flash twice simultaneously. If the teach was not successful, the Q1 and Q2 LEDs flash alternately.

7. If necessary, perform fine teach. → See Page 34, Chapter 8.3.

8. In order to leave teach mode, either press and hold the select pushbutton longer than 5 seconds or wait 5 minutes without pressing the pushbuttons.

far < near (inverted behavior)

![Fig. 12: Setting switching points for window (inverted behavior)](image_url)

① Teach point far, position ①

② Teach point near, position ②
Example: Window teach is to be performed for the Q1 switching output.

1. Position object at teach point ②.

2. Press and hold the select pushbutton for longer than 5 seconds. The Q1 near LED lights up.

3. Press the set pushbutton.
 If the teach was successful, the setting is applied immediately. The Q1 and Q2 LEDs flash twice simultaneously. If the teach was not successful, the Q1 and Q2 LEDs flash alternately.

4. If necessary, perform fine teach. → See Page 34, Chapter 8.3.

5. Position object at teach point ①.

6. Press the select pushbutton. The Q1 far LED lights up.
 Press the set pushbutton.
 If the teach was successful, the setting is applied immediately.
 The Q1 and Q2 LEDs flash twice simultaneously. If the teach was not successful, the Q1 and Q2 LEDs flash alternately.

7. If necessary, perform fine teach. → See Page 34, Chapter 8.3.

8. In order to leave teach mode, either press and hold the select pushbutton longer than 5 seconds or wait 5 minutes without pressing the pushbuttons.
8.1.3 Teaching in the background (ObSB)

Object between Sensor and Background (ObSB)

The output is set when objects are detected that differ from the background. The tolerance range around the taught-in background is ± 25 mm plus a hysteresis of 25 mm. The hysteresis can be configured only via IO-Link.

Fig. 13: Object between Sensor and Background (ObSB) teach

1. **Teach point, position**
2. **Tolerance around teach point: ± 25 mm**

Example: ObSB mode is to be set for the switching output Q1.

1. Align distance sensor on background (teach point ①).
2. Press and hold the select pushbutton for longer than 5 seconds. The Q1 near LED lights up.
3. Press repeatedly the select pushbutton until the Q1 near and Q1 far (ObSB) LEDs light up.
4. Press the set pushbutton.
 If the teach was successful, the setting is applied immediately. The Q1 and Q2 LEDs flash twice simultaneously. If the teach was not successful, the Q1 and Q2 LEDs flash alternately.
5. If necessary, perform fine teach. → See Page 34, Chapter 8.3.
6. In order to leave teach mode, either press and hold the select pushbutton longer than 5 seconds or wait 5 minutes without pressing the pushbuttons.
8.2 Scaling the analog output

NOTE
The analog output function for Q2 is available only in the DT35 and DL35 distance sensors.

NOTE
If the "near" teach point is taught in at a distance greater than the "far" teach point, the output behavior is inverted.

You can scale the analog output of the sensor within the specified measuring range of the sensor. The measurement must be possible on the object to be taught at the time of the teach.

Factory setting:
- DT35: 4 mA / 0 V \(\leq 50 \) mm, 20 mA / 10 V \(\leq 10,000 \) mm
- DL35: 4 mA / 0 V \(\leq 200 \) mm, 20 mA / 10 V \(\leq 35,000 \) mm
- The resolution of the analog output is 12 bits.

Set the output behavior for the Q2 output (4 ... 20 mA / 0 ... 10 V / switching output 2) in expert mode. \(\rightarrow \) See Page 36, Chapter 8.5.

Fig. 14: Scaling the analog output

1. Teach point for distance near the sensor
2. Minimum span between the teach points of the distance near the sensor and the distance far from the sensor: 50 mm
3. Teach point for distance far from the sensor
Scaling the analog output

Example: 4 mA is to correspond to a distance near the sensor and 20 mA is to correspond to a distance far from the sensor.

Prerequisite: 4 ... 20 mA has been selected for Q2. → See Page 36, Chapter 8.5.

1. Position object at teach point ①.
2. Press and hold the select pushbutton for longer than 5 seconds. The Q1 near LED lights up.
3. Press repeatedly the select pushbutton until the Q2 near LED lights up.
4. Press the set pushbutton.
 If the teach was successful, the setting is applied immediately. The Q1 and Q2 LEDs flash twice simultaneously. If the teach was not successful, the Q1 and Q2 LEDs flash alternately.
5. If necessary, perform fine teach. → See Page 34, Chapter 8.3
6. Position object at teach point ②.
7. Press the select pushbutton. The Q2 far LED lights up.
8. Press the set pushbutton.
 If the teach was successful, the setting is applied immediately. The Q1 and Q2 LEDs flash twice simultaneously. If the teach was not successful, the Q1 and Q2 LEDs flash alternately.
9. If necessary, perform fine teach. → See Page 34, Chapter 8.3.
10. In order to leave teach mode, either press and hold the select pushbutton longer than 5 seconds or wait 5 minutes without pressing the pushbuttons.

8.3 Performing fine teach

NOTE
Possibility for fine teach automatically ends if no pushbuttons have been pressed for 30 seconds.

Performing fine teach

You can perform a fine teach directly after having successfully performed a teach. You can use the fine teach to move the taught-in switching point or analog point.

1. Perform teach. → See Page 27, Chapter 8.1 and Page 33, Chapter 8.2.
2. Press the select and set pushbuttons simultaneously for less than 1 second. The LED of the teach point to be moved flashes.
Performing fine teach (continued)

3. Perform one of the following steps:
 - Every time you press the set (+) pushbutton, you move the previously taught-in point by +10 mm.
 - Every time you press the set (–) pushbutton, you move the previously taught-in point by –10 mm.

4. In order to leave fine teach mode, either press the select and set pushbuttons simultaneously for less than 1 second or wait 30 seconds without pressing the pushbuttons.

8.4 Configuring the speed

NOTE
The configured speed affects the measuring range, repeatability, switching frequency, and response time to be achieved.
→ For "repeatability" diagram, see Page 57, Chapter 13.10.
→ For output rate, response time, and switching frequency, see Page 54, Chapter 13.3.

1. Press and hold the select pushbutton for longer than 5 seconds. The Q1 near LED lights up.

2. Press repeatedly the select pushbutton until the LED slow... fast flashes.

3. Press repeatedly the set pushbutton until the desired speed has been set.
 - LED slow ... fast flashes cyclically 1 x: super-slow
 - LED slow ... fast flashes cyclically 2 x: slow
 - LED slow ... fast flashes cyclically 3 x: medium
 - LED slow ... fast flashes cyclically 4 x: fast
 - LED slow ... fast flashes cyclically 5 x: super-fast
 - LED slow ... fast lights up continuously: expert setting, adjustable only via IO-Link
 → See Page 43, Chapter 9.3.3.

4. In order to leave teach mode, either press and hold the select pushbutton simultaneously for less than 5 seconds or wait 5 minutes without pressing the pushbuttons.
8.5 Expert mode

Use expert mode to set the following functions:

- **Function for multifunctional input MF:**
 External teach (factory setting), laser off, multifunctional input MF inactive

- **Level for multifunctional input MF:**
 High active (factory setting), Low active

- **For DT35/DL35 distance sensors:**
 Output behavior for output Q2:
 4 ... 20 mA (factory setting), 0 ... 10 V, switching output Q2

<table>
<thead>
<tr>
<th>Description</th>
<th>Active LED</th>
<th>LED slow ... fast</th>
</tr>
</thead>
</table>
| Function for multifunctional input MF | Q1 near | • LED slow ... fast flashes 1 x: external teach
 • LED slow ... fast flashes 2 x: laser off
 • LED slow ... fast flashes 3 x: multifunctional input MF inactive |
| Level for multifunctional input MF | Q1 far | • LED slow ... fast flashes 1 x: low active
 • LED slow ... fast flashes 2 x: high active |
| Output behavior for Q2 output ¹) | Q2 near | • LED slow ... fast flashes 1 x: 4 ... 20 mA
 • LED slow ... fast flashes 2 x: 0 ... 10 V
 • LED slow ... fast flashes 3 x: Switching output |

¹) For DT35/DL35 distance sensors only

Table 8: Overview of expert mode

Output: The Q2 output is to be set to 0 ... 10 V.

1. From operating mode only: Press and hold select and set pushbuttons simultaneously for longer than 10 seconds. The Q1 near LED lights up and the LED slow ... fast flashes cyclically according to the previous setting.

2. Press repeatedly the pushbutton until the LED Q2 near lights up.

3. Press repeatedly the set pushbutton until the desired option has been set.

 - LED slow ... fast flashes 1 x: 4 ... 20 mA
 - LED slow ... fast flashes 2 x: 0 ... 10 V
 - LED slow ... fast flashes 3 x: switching output.

4. To leave expert mode, press and hold the select and set pushbuttons simultaneously for longer than 10 seconds or wait 5 minutes without pressing the pushbuttons.
8.6 Reset to factory setting

1. Switch off the supply voltage.
2. Press and hold the select pushbutton.
3. Hold down the select pushbutton and switch on the supply voltage.
4. When all teach LEDs flash, release the select pushbutton.
All settings have been reset to the factory setting.

8.7 External teach functions

NOTE
You can activate or deactivate a confirmation function, which provides a feedback about the accomplishment of an external teach. This teach confirmation can be activated via IO-Link or the multifunctional input MF. The feedback is provided via Q1. → See Page 50, Chapter 10.4.

You can perform an external teach by applying a signal to the multifunctional input MF. The "external teach" option for the multifunctional input MF must be selected via expert mode. → See Page 36, Chapter 8.5.

The timing tolerance for the two "Move last teach point" functions is ± 20 ms. The timing tolerance is ± 30 ms for the other teach functions.

<table>
<thead>
<tr>
<th>Teach function</th>
<th>Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move last teach point + 10 mm</td>
<td>60</td>
</tr>
<tr>
<td>Move last teach point – 10 mm</td>
<td>120</td>
</tr>
<tr>
<td>Switch off laser</td>
<td>200</td>
</tr>
<tr>
<td>Switch on laser</td>
<td>300</td>
</tr>
<tr>
<td>Teach in Q1 distance to object</td>
<td>400</td>
</tr>
<tr>
<td>Teach in inverted behavior for Q1 distance to object</td>
<td>500</td>
</tr>
<tr>
<td>Teach in Q1 near for window</td>
<td>600</td>
</tr>
<tr>
<td>Teach in Q1 far for window</td>
<td>700</td>
</tr>
<tr>
<td>Teach in Q1 object between sensor and background</td>
<td>800</td>
</tr>
</tbody>
</table>
| Teach in Q1 window centering
1, 2) | 900 |
| Teach in Q2 distance to object | 1000 |
| Teach in inverted behavior for Q2 distance to object | 1100 |
| Teach in Q2 near for window | 1200 |
| Teach in Q2 far for window | 1300 |
Overview of external teach functions (continued)

<table>
<thead>
<tr>
<th>Teach function</th>
<th>Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teach in Q2 object between sensor and background</td>
<td>1400</td>
</tr>
<tr>
<td>Teach in Q2 window centering</td>
<td>1500</td>
</tr>
<tr>
<td>Teach in analog output 4 mA</td>
<td>1600</td>
</tr>
<tr>
<td>Teach in analog output 20 mA</td>
<td>1700</td>
</tr>
<tr>
<td>Teach in analog output 0 V</td>
<td>1800</td>
</tr>
<tr>
<td>Teach in analog output 10 V</td>
<td>1900</td>
</tr>
<tr>
<td>Teach in analog output centering</td>
<td>2000</td>
</tr>
<tr>
<td>Deactivate teach confirmation</td>
<td>2100</td>
</tr>
<tr>
<td>Activate teach confirmation</td>
<td>2200</td>
</tr>
<tr>
<td>Laser off</td>
<td>> 3000</td>
</tr>
</tbody>
</table>

Table 9: Overview of external teach functions

1) Centering limits; the near and far points that have been moved via centering function must always be within the measuring range. The success and the usability of the centering must always be evaluated by the user.

2) \(\rightarrow\) For a description, see Page 49, Chapter 10.3 “Centering function”.

3) These parameters are valid only for DT and DL models. For DS and DR models, these teach functions would cause an error indication (Q1 and Q2 LEDs flashing alternately).

4) \(\rightarrow\) For a description, see Page 50, Chapter 10.4 “Teach confirmation function”.

© SICK AG • Subject to change without notice • 8014868/YEF7/2014-09-02
9 IO-Link interface

The distance sensors are IO-Link-capable in accordance with the V1.0 specification.

You can download the specific sensor IO-Link device description and the IODD (IO Device Description) online at "www.mysick.com/en/dx35".

9.1 Physical layer

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIO mode (standard I/O mode)</td>
<td>Yes</td>
</tr>
<tr>
<td>Minimum cycle time (output rate)</td>
<td>2.3 ms</td>
</tr>
<tr>
<td>Speed</td>
<td>COM2 (38.4 kBaud)</td>
</tr>
<tr>
<td>Process data width</td>
<td>16 bits (frame type 2.2)</td>
</tr>
</tbody>
</table>

Table 10: Physical layer

9.2 Process data

The process data for the Dx35 distance sensors has a data width of 16 bits. The content can be adjusted using the "process data structure" index 83. Factory setting for index 83: Option "3" 16-bit distance measurement value

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>Read</td>
</tr>
<tr>
<td>Data</td>
<td>2 bytes</td>
</tr>
<tr>
<td>Data type</td>
<td>UINT (unsigned integer)</td>
</tr>
</tbody>
</table>

Table 11: Process data

0: Distance measurement value, status of Q1 and Q2 switching outputs

<table>
<thead>
<tr>
<th>MSB<sup>1</sup></th>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>LSB<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0: Distance measurement value (14-bit) <sup>4, 5</sup></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>Q1</td>
<td></td>
</tr>
</tbody>
</table>

1: Distance measurement value, signal level warning VMA, alarm ³

<table>
<thead>
<tr>
<th>MSB<sup>1</sup></th>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>LSB<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1: Distance measurement value (14-bit) <sup>4, 5</sup></td>
<td></td>
</tr>
<tr>
<td>VMA<sup>3</sup></td>
<td></td>
<td>Alarm</td>
<td></td>
</tr>
</tbody>
</table>
2: Level, signal level warning VMA, alarm

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Signal level (14-bit)</th>
<th>VMA</th>
<th>Alarm</th>
</tr>
</thead>
</table>

3: Distance (factory setting)

| Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Distance measurement value (16-bit) |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------------|-----|-------|

4: Distance value, signal quality

| Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Distance measurement value (14-bit) | Signal quality (2-bit) |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------------|----------------------|-------|

1) Most significant bit.
2) Least significant bit.
3) → See Page 8, Chapter 1.1, chapter "Output as Output as signal level warning (VMA)."
4) For a configured resolution of, for example, 1 mm, and an available process data width of 14 bits, a maximum of 16,383 mm can be represented for the distance measurement value. Higher values are output as 16,383 mm. If a very high resolution is required at a greater distance, you can set an offset for the process data using index 107, "process data standardization".
5) Resolution selectable: 0.1 mm / 1 mm / 10 mm (via index 105).
6) Signal quality from 0 to 3. 0 = No signal or very weak signal; 1 = Sufficient; 2 = Good; 3 = Excellent.

Table 12: Process data structure

9.3 Service data

9.3.1 IO-Link-specific

<table>
<thead>
<tr>
<th>Index decimal (hex)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value range</th>
<th>Example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (0x10)</td>
<td>Vendor name</td>
<td>String</td>
<td>R</td>
<td>64 bytes</td>
<td>SICK AG</td>
<td>→ See IO-Link specification.</td>
</tr>
<tr>
<td>17 (0x11)</td>
<td>Vendor text</td>
<td>String</td>
<td>R</td>
<td>64 bytes</td>
<td>Distance sensors</td>
<td>-</td>
</tr>
<tr>
<td>18 (0x12)</td>
<td>Product name</td>
<td>String</td>
<td>R</td>
<td>64 bytes</td>
<td>DT35-B15251</td>
<td>-</td>
</tr>
<tr>
<td>19 (0x13)</td>
<td>Product ID</td>
<td>String</td>
<td>R</td>
<td>64 bytes</td>
<td>1057652</td>
<td>-</td>
</tr>
<tr>
<td>21 (0x15)</td>
<td>Serial number</td>
<td>String</td>
<td>R</td>
<td>16 bytes</td>
<td>12130005</td>
<td>-</td>
</tr>
<tr>
<td>24 (0x18)</td>
<td>Application-specific name</td>
<td>String</td>
<td>R/W</td>
<td>64 bytes</td>
<td>Sensor location 1</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 13: IO-Link-specific service data
Other settings

<table>
<thead>
<tr>
<th>Index decimal (hex)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value range</th>
<th>Example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 (0x54)</td>
<td>User tag 1</td>
<td>UINT32</td>
<td>R/W</td>
<td>32 bits</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>85 (0x55)</td>
<td>User tag 2</td>
<td>UINT16</td>
<td>R/W</td>
<td>16 bits</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>40 (0x28)</td>
<td>Process data</td>
<td>UINT16</td>
<td>R</td>
<td>16 bits</td>
<td>Content depends on "process data" setting</td>
<td></td>
</tr>
</tbody>
</table>

Table 14: IO-Link-specific service data – other settings

9.3.2 SICK-specific – outputs

NOTE

In the following tables, the factory settings are indicated in bold in the "Value range" or "Example" columns.

<table>
<thead>
<tr>
<th>Index decimal (hex)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value range</th>
<th>Example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>69 (0x45)</td>
<td>Q1 switching function</td>
<td>UINT8</td>
<td>R/W</td>
<td>• 0: DtO (Distance to Object)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1: ObSB (Object between Sensor and Background)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 2: Window</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 3: VMA (signal level warning)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 4: Alarm (fault output)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 (0x46)</td>
<td>Q1 switching point near</td>
<td>UINT16</td>
<td>R/W</td>
<td>50 ... 50000 mm</td>
<td>–</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>72 (0x48)</td>
<td>Q1 switching point far</td>
<td>UINT16</td>
<td>R/W</td>
<td>50 ... 50000 mm</td>
<td>DT35/DS35: 10000</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DL35/DR35: 35000</td>
<td></td>
</tr>
<tr>
<td>71 (0x47)</td>
<td>Q1 hysteresis near</td>
<td>UINT16</td>
<td>R/W</td>
<td>0 ... 49550 mm</td>
<td>25</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>73 (0x49)</td>
<td>Q1 hysteresis far</td>
<td>UINT16</td>
<td>R/W</td>
<td>0 ... 49550 mm</td>
<td>25</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>94 (0x5E)</td>
<td>Q1 near-far centering</td>
<td>UINT16</td>
<td>R/W</td>
<td>50 ... 50000 mm</td>
<td>–</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>92 (0x5C)</td>
<td>Q2 output function</td>
<td>UINT8</td>
<td>R/W</td>
<td>• 0: 4 ... 20 mA</td>
<td>DT35/DR35: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1: 0 ... 10 V</td>
<td>DS35/DR35: –</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 2: Switching</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IO-Link interface

<table>
<thead>
<tr>
<th>Index decimal (hex)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value range</th>
<th>Example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>74 (0x4A)</td>
<td>Q2 switching function</td>
<td>UINT8</td>
<td>R/W</td>
<td>• 0: DtO (Distance to Object)</td>
<td>DS35/DR35: 0 DT35/DL35:–</td>
<td>→ See Page 27, Chapter 8, Page 48, Chapter 10.1 and Page 49, Chapter 10.2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1: ObSB (Object between Sensor and Background)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 2: Window</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 3: VMA (signal level warning)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 4: Alarm (fault output)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 (0x4B)</td>
<td>Q2 switching point near</td>
<td>UINT16</td>
<td>R/W</td>
<td>50 ... 50000 mm</td>
<td>–</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>76 (0x4C)</td>
<td>Q2 hysteresis near</td>
<td>UINT16</td>
<td>R/W</td>
<td>0 ... 49550 mm</td>
<td>25</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>77 (0x4D)</td>
<td>Q2 hysteresis far</td>
<td>UINT16</td>
<td>R/W</td>
<td>0 ... 49550 mm</td>
<td>25</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>78 (0x4E)</td>
<td>Q2 near-far centering</td>
<td>UINT16</td>
<td>R/W</td>
<td>50 ... 50000 mm</td>
<td>–</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>79 (0x4F)</td>
<td>Q2 analog near</td>
<td>UINT16</td>
<td>R/W</td>
<td>50 ... 50000 mm</td>
<td>DT35: 50 DL35: 200 DS35/DR35: –</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>80 (0x50)</td>
<td>Q2 analog far</td>
<td>UINT16</td>
<td>R/W</td>
<td>50 ... 50000 mm</td>
<td>DT35: 10000 DL35: 35000 DS35/DR35: –</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>96 (0x60)</td>
<td>Q2 analog near-far centering</td>
<td>UINT16</td>
<td>R/W</td>
<td>50 ... 50000 mm</td>
<td>DT35: 5025 DL35: 17600 DS35/DR35: –</td>
<td>In 1 mm steps</td>
</tr>
<tr>
<td>93 (0x5D)</td>
<td>Q2 Signal level warning (VMA) threshold</td>
<td>UINT16</td>
<td>R/W</td>
<td>0 ... 65535</td>
<td>–</td>
<td>→ See Page 48, Chapter 10.1 and Page 49, Chapter 10.2.</td>
</tr>
<tr>
<td>65 (0x41)</td>
<td>Q1/Q2 inversion</td>
<td>Record</td>
<td>R/W</td>
<td>• 0: Q1 and Q2 not inverted</td>
<td>Bit 0: Q1 Bit 1: Q2 Bit 2 ... 7: reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1: Only Q1 inverted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 2: Only Q2 inverted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 3: Q1 and Q2 inverted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 (0x6A)</td>
<td>Distance offset</td>
<td>UINT16</td>
<td>R/W</td>
<td>0 ... 50000</td>
<td>–</td>
<td>In 1 mm steps</td>
</tr>
</tbody>
</table>
9.3.3 SICK-specific – sensor performance

<table>
<thead>
<tr>
<th>Index decimal (hex)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value range</th>
<th>Example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>103 (0x67)</td>
<td>Response time</td>
<td>UINT8</td>
<td>R/W</td>
<td>• 0: Expert</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1: Super-slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 2: Slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 3: Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 4: Fast</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 5: Super-fast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 (0x40)</td>
<td>Integration time of the measurement or output rate</td>
<td>UINT8</td>
<td>R/W</td>
<td>• 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67 (0x43)</td>
<td>Averaging</td>
<td>UINT8</td>
<td>R/W</td>
<td>• 1: OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 2: Filter depth 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 4: Filter depth 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 8: Filter depth 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 16: Filter depth 16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 15: SICK-specific service data – outputs

Indexes 64, 67, and 66 available only if “0: Expert” was selected here.

DT35 and DS35 red laser, class 1 devices: Integration time of the measurement or output rate $2^n \times 2$ ms, All other devices: Integration time of the measurement or output rate $2^n \times 1$ ms Writable only if "0: Expert" was selected for index "103". Sliding averaging over x measurement values. Affects only process data and analog output, not the switching behavior. Writable only if "0: Expert" was selected for index "103".
IO-Link interface

<table>
<thead>
<tr>
<th>Index decimal (hex)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value range</th>
<th>Example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>66 (0x42)</td>
<td>Bit filter for switching output(s)</td>
<td>UINT8</td>
<td>R/W</td>
<td>• 0: OFF</td>
<td>Filter depth 4: Four consecutive measurement values must exceed or fall below the configured switching point in order for the switching output to react.</td>
<td>Defines how often the switching requirement (e.g. exceed switching point Q1 far) has to be fulfilled in succession before the switching output changes its status. The bit filter affects only the switching output behavior, not the process data and analog output. Writable only if “0: Expert” was selected for index “103”.</td>
</tr>
</tbody>
</table>

1) SICK-specific service data – sensor performance
9.3.4 SICK-specific – teach

<table>
<thead>
<tr>
<th>Index decimal (hex)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value range</th>
<th>Example</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 130 (0x82) | TEACH | UINT16 | W | • 0: Q1 D10 (Q1 distance to object)
• 1: Q2 D10 (Q2 distance to object)
• 2: Q1 near
• 3: Q1 far
• 4: Q1 centering
• 5: Q2 near
• 6: Q2 far
• 7: Q2 centering
• 8: Q1 ObSB (Q1 object between sensor and background)
• 9: Q2 ObSB (Q2 object between sensor and background)
• 10: Q2 4 mA
• 11: Q2 20 mA
• 12: Q2 0 V
• 13: Q2 10 V
• 14: Q2 Analog centering
• 15: Fine teach +10 mm
• 16: Fine teach -10 mm | | A teach overwrites a function that has already been set with a newly selected function. For values that are not taught in again and for an unsuccessful teach, the old value is retained. |

1) SICK-specific service data – teach

9.3.5 SICK-specific – process data

<table>
<thead>
<tr>
<th>Index decimal (hex)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value range</th>
<th>Example</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 83 (0x53) | Process data structure | UINT8 | R/W | • 0: Distance+Q1+Q2
• 1: Distance+VMA +alarm
• 2: Level+VMA+alarm
• 3: Distance
• 4: Distance+ signal quality | 3 | → Page 39, Chapter 9.2. |
| 105 (0x69) | Process data resolution | UINT8 | R/W | • 0: 0.1 mm
• 1: 1 mm
• 2: 10 mm | | Resolution distance measurement value for the process data (IO-Link only) |
IO-Link interface

<table>
<thead>
<tr>
<th>Index decimal (hex)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value range</th>
<th>Example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>107 (0x6B)</td>
<td>Process data normalization</td>
<td>UINT16</td>
<td>R/W</td>
<td>0 ... 50000 mm</td>
<td>Move process data zero point in 1 mm steps.</td>
<td></td>
</tr>
</tbody>
</table>

Table 16: SICK-specific service data – process data

9.3.6 SICK-specific – other settings

<table>
<thead>
<tr>
<th>Index decimal (hex)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value range</th>
<th>Example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>81 (0x51)</td>
<td>Multifunctional input MF function</td>
<td>UINT8</td>
<td>R/W</td>
<td>0: Teach, 1: Laser on/off, 2: MF OFF (MF deactivated)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| 99 (0x63) | Multifunctional input MF level (bit 0) Multifunctional input MF teach confirmation on Q1 (bit 1) | Record | R/W | Bit 0: 0: Low active, 1: High active Bit 1: 0: Inactive, 1: Active | | → See Page 48, Chapter 10.1 and Page 49, Chapter 10.2. |

| 104 (0x68) | Alarm function (bit 0) | UINT8 | R/W | 0: Clamp (zero-value output), 1: Hold | | Select behavior for the sensor if no measurement is possible. • Clamp: The sensor outputs "0". • Hold: The last valid measurement value is retained. **Note** Do not set "hold" option for ObSB mode. → See Page 49, Chapter 10.2. |

| 82 (0x52) | Pushbutton lock | UINT8 | R/W | 0: Switch OFF, 1: Switch ON | 0 | |

| 68 (0x44) | Laser on/off | UINT8 | R/W | 0: Switch OFF, 1: Switch ON | 1 | |

Table 17: SICK-specific service data – other settings
9.3.7 System command

<table>
<thead>
<tr>
<th>Index (decimal)</th>
<th>Description</th>
<th>Format</th>
<th>Access</th>
<th>Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (0x02)</td>
<td>System command: Reset to factory setting</td>
<td>UNIT8</td>
<td>W</td>
<td>130</td>
<td>Reset parameter to the factory setting.</td>
</tr>
</tbody>
</table>

Table 18: System command

9.4 Error Codes

→ For error codes, see IO-Link specification V1.0.
10 Additional functions

10.1 Output as signal level warning (VMA)

NOTE
This function can be configured only via IO-Link!

You can configure the Q1 or Q2 output that a signal is given out when the received light level gets to low. The level threshold can be adjusted within the range of 0 … 65,535. If the signal exceeds or falls below the configured level, the output changes its status. Hysteresis cannot be configured. The output behavior can be inverted.

Depending on the application, the setting must always be defined by the user. When using the signal level warning (VMA) we always recommend to perform a reference measurement onto an object with known and constant optical properties.

→ See Page 41, Chapter 9.3.2, indexes 74, 93, and 65.

Fig. 15: Output behavior signal level warning (VMA) dependent on the received light level

1 Minimum received light level
2 Maximum received light level
10.2 Output as alarm output

NOTE
This function can be configured only via IO-Link!

Additionally to the signal level warning (VMA) you can also configure the Q1 or Q2 output for the switching signal "No measurement possible". The output behavior can be inverted.

This function is especially useful if "Alarm function = Hold" has been set for the sensor behavior. This allows you to determine whether the sensor actually is able to measure or a held value is output, even if an output signal is provided at any time.

Set the alarm function via the index 104. → See Page 46, Chapter 9.3.6.

10.3 Centering function

Use the centering teach to move the center of the switching window or the center of the analog output scaling (12 mA/5 V) to the newly taught-in position. A centering teach is possible for Q1 windows, Q2 windows, and an analog output.

You can perform the centering function in the following ways:

• Teach via multifunctional input MF (→ Page 37, Chapter 8.7)
• Teach via IO-Link
• Value input via IO-Link.

→ For setting via IO-Link, see Page 41, Chapter 9.3.2, indexes 94, 95, and 96.

The previously taught-in relative distance between near and far is retained. The values for near and far must not be moved beyond the measuring range of the sensor via a centering function. If the teach was not successful, the Q1 and Q2 LEDs flash alternately.

Fig. 16: Centering function for the example "window not inverted."

① Old center point before centering function
② New center point after centering function
10.4 Teach confirmation function

Fig. 17: Teach confirmation function.

1. Switching output before teach.
2. Teach request retains the last active Q1 status in order, for example, to avoid toggling if hysteresis is too low.
3. Teach execution time, max. 1 s.
4. First signal edge at Q1 after starting the teach: Initiate confirmation by inverting for 100 ms.
5. Result: OK (100 ms), failed (300 ms).
6. Quit confirmation after 500 ms.
7. Return to current switching output. The switching output can be modified via a new teach point.
11 Cleaning and maintenance

11.1 Cleaning

NOTICE

Equipment damage due to improper cleaning!

Improper cleaning may result in equipment damage.

For this reason:

• Never use cleaning agents containing aggressive substances.
• Never use pointed objects for cleaning.

Clean the front screens at regular intervals with a lint-free cloth and plastic cleaning agent.

The cleaning interval essentially depends on the ambient conditions.

11.2 Maintenance

The distance sensor requires the following maintenance work at regular intervals:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Maintenance work</th>
<th>To be performed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning interval depends on ambient conditions and climate</td>
<td>Clean housing.</td>
<td>Specialist</td>
</tr>
<tr>
<td>Every 6 months depending on the application conditions with regard to shock and vibration</td>
<td>Check the screw connections and plug connections.</td>
<td>Specialist</td>
</tr>
</tbody>
</table>

Table 19: Maintenance schedule

12 Disposal

Please observe the following when disposing of the removal sensor:

• Do not dispose of the device along with household waste.
• Dispose of the device according to the applicable regulations in your country.
13 Technical data

NOTE
You can download, save, and print the relevant online data sheet for your distance sensor, including technical data, dimensions, and connection diagrams, from "www.mysick.com/en/dx35".
13.1 Dimensions

Fig. 18: "Dx35 distance sensor" dimensions

1. Optical axis, sender
2. Optical axis, receiver
3. Zero level
4. Mounting hole M4
5. LEDs, teach-in
6. LEDs, status Q1/Q2
7. LED, Status indicator
8. Control elements
13.2 Laser/optics

- **Light source**
 - Dx35-Bxx2xx, Dx35-Bxx5xx: laser diode, red light
 - Dx35-Bxx8xx: laser diode, infrared light

- **Laser class**
 - Dx35-Bxx2xx: 2 according to EN 60825-1
 - Dx35-Bxx5xx, Dx35-Bxx8xx: 1 according to EN 60825-1

- **Maximum output**
 - Dx35-Bxx2xx, DT35-Bxx5xx, DS35-Bxx5xx: ≤ 250 mW
 - Dx35-Bxx8xx: ≤ 130 mW
 - DL35-Bxx5xx, DR35-Bxx5xx: ≤ 120 mW

- **Pulse duration**
 - Dx35-Bxx2xx, Dx35-Bxx5xx: 4 ns
 - Dx35-Bxx8xx: 3.5 ns

- **Wavelength**
 - Dx35-Bxx2xx, Dx35-Bxx5xx: 658 nm
 - Dx35-Bxx8xx: 827 nm

- **Pulse rate**
 - Dx35-Bxx2xx, Dx35-Bxx8xx, DL35-Bxx5xx, DR35-Bxx5xx: 1/250
 - DT35-Bxx5xx, DS35-Bxx5xx: 1/500

- **Typical light spot dimensions**
 - 15 mm x 15 mm for 2 m distance

- **Laser operating life (MTTF at +25 °C)**
 - 100,000 h

Table 20: Laser/optics

13.3 Performance data

- **Measuring range**
 - DT35-Bxxxxx, DS35-Bxxxxx
 - 90 % remission: 50 mm ... 12,000 mm
 - 18 % remission: 50 mm ... 5,300 mm
 - 6 % remission: 50 mm ... 3,100 mm
 - DL35-Bxxxxx, DR35-Bxxxxx
 - 200 mm ... 35,000 mm (diamond grade)

- **Resolution**
 - 0.1 mm

- **Repeatability**
 - 0.5 mm ... 5 mm

- **Accuracy**
 - DT35-Bxxxxx, DS35-Bxxxxx: typically ± 10 mm
 - DL35-Bxxxxx, DR35-Bxxxxx: typically ± 15 mm

- **Output rate**
 - See Page 55, Table 22.

- **Response time**
 - See Page 55, Table 22.

- **Switching frequency**
 - See Page 55, Table 22.

- **Initialization time**
 - ≤ 500 ms

- **Warm-up time**
 - ≤ 20 min

1) With the "Super-slow" speed setting
2) Equivalent to 1 σ
Technical data

3) DT35-Bxxxxxx, DS35-Bxxxxxx: At 6 % ... 90 % remission
 DL35-Bxxxxxx, DR35-Bxxxxxx: on "diamond grade" reflective tape
4) Depends on the configured speed "super-slow" ... "super-fast"
5) Continuous change of the distance from the object in the measuring range
6) Lateral entry of the object into the measuring range

Table 21: Performance data

Output rate, response time, and switching frequency as a function of the speed setting

<table>
<thead>
<tr>
<th></th>
<th>All Dx35 except for DT35-B15551 and DS35-B15521</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Super-fast</td>
</tr>
<tr>
<td>Output rate</td>
<td>1 ms</td>
</tr>
<tr>
<td>Response time</td>
<td>2.5 ms</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>333 Hz</td>
</tr>
</tbody>
</table>

	DT35-B15551 and DS35-B15521				
	Super-fast	Fast	Medium	Slow	Super-slow
Output rate	2 ms	4 ms	8 ms	16 ms	64 ms
Response time	4.5 ms	12.5 ms	24.5 ms	48.5 ms	192.5 ms
Switching frequency	166 Hz	50 Hz	25 Hz	12 Hz	3 Hz

Table 22: Overview of output rate, response time, and switching frequency

13.4 Power supply

Supply voltage V_s
- $12 \text{ V DC ... 30 V DC}$
- $18 \text{ V DC ... 30 V DC}$ (when using IO-Link)
- DT35-Bxxxxxx, DL-Bxxxxxx: $13 \text{ V DC ... 30 V DC}$ (when using the analog voltage output)

Power consumption $\leq 1.7 \text{ W}$

Residual ripple $< 5 \text{ V}_{ss}$

1) Limit values, reverse-polarity protected operation in short-circuit protected network: max. 8 A
2) At 20 °C and without load
3) May not fall short of or exceed V_s tolerances

Table 23: Power supply

13.5 Inputs

Multifunctional input (MF)
1 x

→ See Page 36, Chapter 8.5

1) Response time: $\leq 60 \text{ ms}$

Table 24: Inputs
Operating instructions Distance sensors Dx35

Technical data

13.6 Outputs

Switching output 1), 2)

- DT35-Bxxxx, DL35-Bxxxxx: 1 x / 1 x / 2 x push-pull: PNP/NPN (100 mA), IO-Link 3)
- DR35-Bxxxxx, DS35-Bxxxxx: 2 x push-pull: PNP/NPN (100 mA), IO-Link

Hysteresis 4)

- DT35-Bxxxxx, DS35-Bxxxxx: 0 mm ... 11,950 mm
- DL35-Bxxxxx, DR35-Bxxxxx: 0 mm ... 34,950 mm

Analog output only DT35-Bxxxxx, DL35-Bxxxxx 3)

1 x 4 mA ... 20 mA (≤ 450 Ω) / 1 x 0 V ... 10 V (≥ 50 kΩ) / –

Analog output resolution only DT35-Bxxxxx, DL35-Bxxxxx 3)

12 bit

1) Output Q, short-circuit protected
2) Voltage drop < 3 V
3) Output Q2, selectable: 4 mA ... 20 mA / 0 V ... 10 V / switching output
4) Adjustable via IO-Link

Table 25: Outputs – sensors with switching outputs

13.7 Interfaces

Data interface

IO-Link

Table 26: Interfaces

13.8 Ambient conditions

Protection class

III

Ambient operation temperature 1)

-30 °C ... +55 °C

Ambient storage temperature

-40 °C ... +75 °C

Vibration resistance

EN 60068-2-6 / EN 60068-2-64

Shock resistance

EN 60068-2-27

Enclosure rating

IP 65, IP 67

Typical ambient light safety

40 klx

1) \(V_s \leq 24 \, V \)

Table 27: Ambient conditions
13.9 Mechanics

Weight 65 g

Housing material
• Housing: plastic (ABS and PC)
• Front screen: acrylic glass (PMMA)

Connection type Male connector M12, 5-pin

Indication LEDs → See Page 53, Chapter 13.1.

Table 28: Structural design

13.10 "Repeatability" diagrams

13.10.1 DT35 and DS35 models

Characteristic curve for "super-slow" speed

Super Slow

Repeatability in mm (inch)

Distance in m (feet)

[Graph]

Fig. 19: Characteristic curve for "super-slow" speed

Characteristic curve for "slow" speed

Slow

Repeatability in mm (inch)

Distance in m (feet)

[Graph]

Fig. 20: Characteristic curve for "slow" speed
Technical data

Characteristic curve for "medium" speed

Medium

Repeatability in mm (inch)

Distance in m (feet)

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(feet)</td>
<td>0</td>
<td>(6.6)</td>
<td>(13.1)</td>
<td>(19.7)</td>
<td>(26.3)</td>
<td>(32.8)</td>
<td>(39.4)</td>
<td>(46)</td>
</tr>
</tbody>
</table>

Repeatability in mm (inch)

0 2 4 6 8 10 12 14

(0.08) (0.16) (0.24) (0.31) (0.39) (0.47) (0.55) (0.63)

Fig. 21: Characteristic curve for "medium" speed

Characteristic curve for "fast" speed

Fast

Repeatability in mm (inch)

Distance in m (feet)

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(feet)</td>
<td>0</td>
<td>(6.6)</td>
<td>(13.1)</td>
<td>(19.7)</td>
<td>(26.3)</td>
<td>(32.8)</td>
<td>(39.4)</td>
<td>(46)</td>
</tr>
</tbody>
</table>

Repeatability in mm (inch)

0 2 4 6 8 10 12 14

(0.08) (0.16) (0.24) (0.31) (0.39) (0.47) (0.55) (0.63)

Fig. 22: Characteristic curve for "fast" speed

Characteristic curve for "super-fast" speed

Super Fast

Repeatability in mm (inch)

Distance in m (feet)

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(feet)</td>
<td>0</td>
<td>(6.6)</td>
<td>(13.1)</td>
<td>(19.7)</td>
<td>(26.3)</td>
<td>(32.8)</td>
<td>(39.4)</td>
<td>(46)</td>
</tr>
</tbody>
</table>

Repeatability in mm (inch)

0 2 4 6 8 10 12 14

(0.08) (0.16) (0.24) (0.31) (0.39) (0.47) (0.55) (0.63)

Fig. 23: Characteristic curve for "super-fast" speed
13.10.2 DL35 and DR35 models

Characteristic curve for "super-slow" ... "super-fast" speeds

Super Slow ... Super Fast

Fig. 24: Characteristic curve for "super-slow" ... "super-fast" speeds
14 Accessories

NOTE
This chapter illustrates only the preferred or most important accessories for the Dx35. For accessories, go to "www.mysick.com/en/dx35", "Accessories".

14.1 Cables and Connectors

14.1.1 Cable socket, straight, with cable

![Fig. 25: Cable socket, M12, 5-pin, straight, with cable](image)

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable socket, M12, 5-pin, straight, 2 m, PVC</td>
<td>DOL-1205-G02M</td>
<td>6008899</td>
</tr>
</tbody>
</table>

14.1.2 Cable socket, angled, with cable

![Fig. 26: Cable socket, M12, 5-pin, angled, with cable](image)

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable socket, M12, 5-pin, angled, 2 m, PVC</td>
<td>DOL-1205-W02M</td>
<td>6008900</td>
</tr>
</tbody>
</table>
14.1.3 Connection cable (plug-socket)

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection type head A: plug, M12, 5-pin, straight,</td>
<td>DSL-1205-G02MC</td>
<td>6025931</td>
</tr>
<tr>
<td>Connection type head B: socket, M12, 5-pin, straight, 2 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.2 Mounting system

14.2.1 Mounting bracket

![Diagram of Mounting bracket BEF-WN-DX50]

Fig. 27: Mounting bracket BEF-WN-DX50

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting bracket, steel, zinc-coated, incl. mounting hardware for the sensor</td>
<td>BEF-WN-DX50</td>
<td>2048370</td>
</tr>
<tr>
<td>Mounting bracket, horizontal light emission for floor or ceiling mounting or vertical for wall mounting, steel, zinc-coated, incl. mounting hardware for the sensor</td>
<td>BEF-WN-DX35</td>
<td>2069592</td>
</tr>
</tbody>
</table>
14.2.2 Alignment bracket

![Alignment bracket diagram]

Fig. 28: Alignment bracket

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment bracket, steel, zinc-coated, incl. mounting hardware for the sensor</td>
<td>BEF-AH-DX50</td>
<td>2048397</td>
</tr>
</tbody>
</table>

© SICK AG • Subject to change without notice • 8014868/YEF7/2014-09-02
14.2.3 Universal bar clamp systems

![Diagram of universal bar clamp systems]

**Fig. 29: Left: Plate N02 for universal clamps
Right: Plate N03 for universal clamps**

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate N02 for universal clamps, mounting materials</td>
<td>BEF-KHS-N02</td>
<td>2051608</td>
</tr>
<tr>
<td>Plate N02N for universal clamps, mounting materials</td>
<td>BEF-KHS-N02N</td>
<td>2051618</td>
</tr>
<tr>
<td>Plate N03 for universal clamps, mounting materials</td>
<td>BEF-KHS-N03</td>
<td>2051609</td>
</tr>
<tr>
<td>Plate N03N for universal clamps, mounting materials</td>
<td>BEF-KHS-N03N</td>
<td>2051619</td>
</tr>
</tbody>
</table>
14.3 Reflector plate and reflective tape

NOTE
Only for DL35 and DR35 models or as an alignment aid for the infrared light models.

14.3.1 Reflector plate

![Fig. 30: Reflector plate](image)

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflector plate, "diamond grade" reflective tape, 330 mm x 330 mm, base plate material: aluminum, screw connection</td>
<td>PL240DG</td>
<td>1017910</td>
</tr>
</tbody>
</table>

14.3.2 Reflective tape

![Fig. 31: Reflective tape](image)

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Diamond grade" reflective tape, self-adhesive, can be assembled from the sheet</td>
<td>REF-DG-K</td>
<td>4019634</td>
</tr>
</tbody>
</table>

14.4 IO-Link master

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO-Link master</td>
<td>IOLSHPB-P3104R01</td>
<td>6039728</td>
</tr>
</tbody>
</table>
15 Menu structure and settings overview

<table>
<thead>
<tr>
<th>Normal operation</th>
<th>Teach mode settings</th>
<th>Function adjustment range</th>
<th>Expert mode settings</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>select > 10 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>select > 5 s</td>
<td>Q1 near</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1 far</td>
<td>set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1 ObSB</td>
<td>set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1 near</td>
<td>set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2 near</td>
<td>set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2 far</td>
<td>set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2 ObSB</td>
<td>set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>set</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teach-in distance of switching point "near" for Q1
DT/DS: 50 ... 50000 mm
DL/DR: 200 ... 50000 mm
Default: DT/DS: 10000 mm
DL/DR: 35000 mm

Teach-in distance of switching point "far" for Q1
DT/DS: 50 ... 50000 mm
DL/DR: 200 ... 50000 mm
Default: –

Teach-in ObSB (Object between Sensor and Background) or background for Q1
DT/DS: 50 ... 50000 mm
DL/DR: 200 ... 50000 mm
Default: –

Teach-in distance of analog or switching point "near" for Q2
DT/DS: 50 ... 50000 mm
DL/DR: 200 ... 50000 mm
Default: DT: 50 mm, DL: 200 mm, DS: 10000 mm, DR: 35000 mm

Teach-in distance of analog or switching point "far" for Q2
DT/DS: 50 ... 50000 mm
DL/DR: 200 ... 50000 mm
Default: DT: 10000 mm, DL: 35000 mm, DS/DR: –

Teach-in ObSB (Object between Sensor and Background) or background for Q2
DT/DS: 50 ... 50000 mm
DL/DR: 200 ... 50000 mm
Default: –

Fine teach
LED of the teach point to be shifted flashes.

Every operation of the key will shift the switching/analog point by +10 mm.
Every operation of the key will shift the switching/analog point by -10 mm.

* In case of a new teach process all required switching/analog points of the specific output have to be taught in.
** For DT35/DL35: Q2 function can be selected (4 ... 20 mA / 0 ... 10 V / switching), for DS35/DR35: Q2 function switching only
*** For DT35/DL35: ObSB for Q2 available with active switching function only
Index

A
Accessories ... 60
Alignment bracket .. 62
Connectors .. 60
IO-Link master ... 64
Mounting bracket .. 61
Reflective tape .. 64
Reflector plate ... 64
Alarm output ... 49
Aligning
DL models .. 23
DR models .. 23
IR models .. 23
Alignment bracket (accessories) 62
Alignment mode
IR models .. 23
Ambient conditions .. 56
C
Centering function .. 41, 49
Characteristic curves
DL35 and DR35 .. 59
DT35 and DS35 .. 57
Cleaning .. 51
Commissioning .. 28
Configuration Overview .. 65
Configuring the speed ... 35
Connection diagram
DS35 and DR35 .. 27
DT35 and DL35 .. 26
Customer service .. 9
D
Dimensions .. 53
Disposal .. 51
DtoO (Distance to Object) ... 29
E
EC declaration of conformity 10
Electrical connection
Distance sensor .. 26
General notes .. 25-27
Electricians .. 12
Environmental protection ... 10
Expert mode .. 36
Explanation of symbols ... 36
External teach functions .. 8
F
Factory setting ... 37
Function ... 20
G
General information ... 8
H
Hazard warnings .. 14
I
Identification .. 15
Incorrect use ... 11
Inputs 55 .. 40
Intended use .. 11
IO-Link
Error Codes .. 47
Process data ... 39
Service data ... 40
IO-Link interface ... 39
IO-Link master (accessories) 64
L
Laser .. 54
Laser class 1
Warning symbol .. 13
Laser class 2
Warning symbol .. 13
Laser radiation .. 14
LEDs
Q1 and Q2 status .. 17
Status indicator .. 18
Teach-in ... 17, 18
Limitation of liability .. 9
M
Maintenance .. 51
Mounting ... 23
Mounting bracket (accessories) 61
Mounting system ... 61
Multifunctional input MF
Configuring the function ... 36
Configuring the level .. 36
O
ObSB (Object between Sensor and Background) 32
Operating instructions ... 8
Operating personnel
Requirements .. 12
Operational safety ... 14
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Alarm output</td>
<td>49</td>
</tr>
<tr>
<td>OWS (output weak signal)</td>
<td>48</td>
</tr>
<tr>
<td>Outputs</td>
<td>56</td>
</tr>
<tr>
<td>Overview of settings</td>
<td>65</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Performance data</td>
<td>54</td>
</tr>
<tr>
<td>Power supply</td>
<td>55</td>
</tr>
<tr>
<td>Process data (IO-Link)</td>
<td>40</td>
</tr>
<tr>
<td>IO-Link-specific</td>
<td>40</td>
</tr>
<tr>
<td>Other settings</td>
<td>46</td>
</tr>
<tr>
<td>Outputs</td>
<td>41</td>
</tr>
<tr>
<td>Process data</td>
<td>45</td>
</tr>
<tr>
<td>Sensor performance</td>
<td>43</td>
</tr>
<tr>
<td>System command</td>
<td>47</td>
</tr>
<tr>
<td>Teach</td>
<td>45</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Reflective tape (accessories)</td>
<td>64</td>
</tr>
<tr>
<td>Reflector plate (accessories)</td>
<td>64</td>
</tr>
<tr>
<td>Repeatability (diagrams)</td>
<td></td>
</tr>
<tr>
<td>DL35 and DR35</td>
<td>59</td>
</tr>
<tr>
<td>DT35 and DS35</td>
<td>57</td>
</tr>
<tr>
<td>Reset</td>
<td>37</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>11</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>25</td>
</tr>
<tr>
<td>Scaling the analog output</td>
<td>33</td>
</tr>
<tr>
<td>Scope of delivery</td>
<td>9</td>
</tr>
<tr>
<td>Settings</td>
<td></td>
</tr>
<tr>
<td>Scaling the analog output</td>
<td>33</td>
</tr>
<tr>
<td>Speed</td>
<td>35</td>
</tr>
<tr>
<td>Signal level warning (VMA)</td>
<td>48</td>
</tr>
<tr>
<td>Skilled personnel</td>
<td>12</td>
</tr>
<tr>
<td>Requirements</td>
<td>12</td>
</tr>
<tr>
<td>Status indicator LED</td>
<td>18</td>
</tr>
<tr>
<td>Storage</td>
<td>22</td>
</tr>
<tr>
<td>Structural design</td>
<td>57</td>
</tr>
<tr>
<td>Structure</td>
<td>17</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Teach confirmation function</td>
<td>50</td>
</tr>
<tr>
<td>Teach-in</td>
<td>28</td>
</tr>
<tr>
<td>Background</td>
<td>32</td>
</tr>
<tr>
<td>Distance to object (DtO)</td>
<td>29</td>
</tr>
<tr>
<td>External teach functions</td>
<td>37</td>
</tr>
<tr>
<td>Fine teach</td>
<td>34</td>
</tr>
<tr>
<td>Object between Sensor and Background (ObSB)</td>
<td>32</td>
</tr>
<tr>
<td>One-point</td>
<td>29</td>
</tr>
<tr>
<td>Window teach</td>
<td>30</td>
</tr>
<tr>
<td>Window (Wnd)</td>
<td>30</td>
</tr>
<tr>
<td>Technical data</td>
<td>52</td>
</tr>
<tr>
<td>Transport</td>
<td>21</td>
</tr>
<tr>
<td>Transport inspection</td>
<td>21</td>
</tr>
<tr>
<td>Type code</td>
<td>16</td>
</tr>
<tr>
<td>Type label</td>
<td>15</td>
</tr>
<tr>
<td>UL safety notes</td>
<td>7</td>
</tr>
<tr>
<td>VMA (signal level warning)</td>
<td>63</td>
</tr>
<tr>
<td>Warning symbol</td>
<td></td>
</tr>
<tr>
<td>Laser protection class 1</td>
<td>13</td>
</tr>
<tr>
<td>Laser protection class 2</td>
<td>13</td>
</tr>
<tr>
<td>Wiring notes</td>
<td>25</td>
</tr>
<tr>
<td>Wnd (window)</td>
<td>30</td>
</tr>
<tr>
<td>UL safety notes</td>
<td>7</td>
</tr>
<tr>
<td>VMA (signal level warning)</td>
<td>63</td>
</tr>
<tr>
<td>Warning symbol</td>
<td></td>
</tr>
<tr>
<td>Laser protection class 1</td>
<td>13</td>
</tr>
<tr>
<td>Laser protection class 2</td>
<td>13</td>
</tr>
<tr>
<td>Wiring notes</td>
<td>25</td>
</tr>
<tr>
<td>Wnd (window)</td>
<td>30</td>
</tr>
</tbody>
</table>
More representatives and agencies at www.sick.com