The LMS4000 measures objects quickly and precisely, independent of their shape, color or surface quality. The aperture angle of 70° results in a wide scanning area, which a continuous laser scans at 600 Hz using a rotating hexagonal mirror. Every scan generates 841 individual measuring points. The use of a red light laser within the visible spectrum makes precise alignment easier.
Objects with a height of 1 m can be measured consistently by the LMS4000 across a width of 2.6 m. For objects 2 m high, the measuring field width can be up to 1.4 m. In addition, the device variant with increased scanning range even enables the measurement of objects with a cross-section of 3 m x 3 m or even 4 m x 2 m.
- Targeted control and reduction of data transmission
The laser scanner can be switched on and off via photoelectric sensors or software commands. This ensures data is only produced when objects are actually being measured. Internal filters allow for targeted reduction of data to the specific application and thus also relieve the overall system.
- Precise and reliable measurement procedure
The continuous-wave method is based on the principle of phase correlation. The object reflects the continuously emitted laser beam onto the receiver of the laser scanner. The resultant phase delay between the emitted and received beam can be used to precisely determine the distance. At the same time, the measurement procedure is resistant to external influences, e.g. ambient light or temperature fluctuations.
In addition to distance data, the sensor can also transmit reflectance, angle correction and quality values as required. This makes it possible to visualize even slight differences in object color and texture, compensate for accelerations acting on the sensor, and identify critical measurement points. The output data format can be extended or reduced individually by each channel.
- Extending the measuring range
Using multiple laser scanners prevents shadowing effects and allows larger measurement fields to be used. The system can synchronize the motors of the rotating mirrors to ensure the devices do not mutually interfere with one another.